终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届甘肃省武威市凉州区金羊镇皇台小九年级数学第一学期开学达标检测模拟试题【含答案】

    立即下载
    加入资料篮
    2025届甘肃省武威市凉州区金羊镇皇台小九年级数学第一学期开学达标检测模拟试题【含答案】第1页
    2025届甘肃省武威市凉州区金羊镇皇台小九年级数学第一学期开学达标检测模拟试题【含答案】第2页
    2025届甘肃省武威市凉州区金羊镇皇台小九年级数学第一学期开学达标检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届甘肃省武威市凉州区金羊镇皇台小九年级数学第一学期开学达标检测模拟试题【含答案】

    展开

    这是一份2025届甘肃省武威市凉州区金羊镇皇台小九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为( )
    A.151°B.122°C.118°D.120°
    2、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    3、(4分)如图,中,平分,交于,交于,若,则四边形的周长是( )
    A.B.C.D.
    4、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是( )
    A.1个B.1个C.3个D.4个
    5、(4分)在平面直角坐标系中,把点绕原点顺时针旋转所得到的点的坐标是( )
    A.B.C.D.
    6、(4分)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:
    小青:OE=OF;小何:四边形DFBE是正方形;
    小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,
    这四位同学写出的结论中不正确的是( )
    A.小青B.小何C.小夏D.小雨
    7、(4分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,观察图形,与∠AED相等的角有( )
    A.4个B.3个C.2个D.1个
    8、(4分)等腰三角形的两边长分别为2、4,则它的周长为( )
    A.8B.10C.8或10D.以上都不对
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知在正方形中,,则正方形的面积为__________.
    10、(4分)如果的平方根是,则_________
    11、(4分)弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
    当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.
    12、(4分)当时,二次根式的值是______.
    13、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.

    (基础探究)
    (1)求证:PD=PE.
    (2)求证:∠DPE=90°
    (3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;
    若∠ABC=62°,则∠DPE=________.
    15、(8分)一个二次函数的图象经过(﹣1,﹣1),(0,0),(1,9)三点
    (1)求这个二次函数的解析式.
    (2)若另外三点(x1,21),(x2,21),(x1+x2,n)也在该二次函数图象上,求n的值.
    16、(8分)在学校组织的“最美数学小报”的评比中,校团委给每个同学的作品打分,成绩分为四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,将八(1)班与八(2)班的成绩整理并绘制成如下统计图:

    请你根据以上提供的信息解答下列问题:
    (1)将表格补充完整.
    (2)若八(1)班有40人,且评分为B级及以上的同学有纪念奖章,请问该班共有几位同学得到奖章?
    17、(10分)直线MN与x轴、y轴分别交于点M、N,并且经过第二、三、四象限,与反比例函数y=(k<0)的图象交于点A、B,过A、B两点分别向x轴、y轴作垂线,垂足为C、D、E、F,AD与BF交于G点.
    (1)比较大小:S矩形ACOD S矩形BEOF(填“>,=,<”).
    (2)求证:①AG•GE=BF•BG;
    ②AM=BN;
    (3)若直线AB的解析式为y=﹣2x﹣2,且AB=3MN,则k的值为 .
    18、(10分)已知2y+1与3x-3成正比例,且x=10时,y=4
    (1)求y与x之间的函数关系式,并指出它是什么函数;(2)点P在这个函数图象上吗?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,正方形、正方形、正方形、正方形、…、正方形按如图所示的方式放置,其中点,,,,…,均在一次函数的图象上,点,,,,…,均在x轴上.若点的坐标为,点的坐标为,则点的坐标为______.
    20、(4分)如图,正方形的边长为8,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为__.
    21、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
    22、(4分)某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.
    23、(4分)在周长为的平行四边形中,相邻两条边的长度比为,则这个平行四边形的较短的边长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
    (1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
    (2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
    25、(10分)如图,已知互余,∠2与∠3互补,.求的度数.
    26、(12分)证明“平行四边形的两组对边分别相等”
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.
    【详解】
    连接BO,延长AO交BC于E,
    ∵AB=AC,AO平分∠BAC,
    ∴AO⊥BC,AO平分BC,
    ∴OB=OC,
    ∵O在AB的垂直平分线上,
    ∴AO=BO,
    ∴AO=CO,
    ∴∠OAC=∠OCA=∠OAD=×58°=29°,
    ∴∠AOC=180°-2×29°=122°,
    故选B.
    此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.
    2、D
    【解析】
    根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:由题意可得:甲步行速度==60米/分;故①符合题意;
    设乙的速度为:x米/分,
    由题意可得:16×60=(16﹣4)x,
    解得x=80
    ∴乙的速度为80米/分;
    ∴乙走完全程的时间==30分,
    故②符合题意;
    由图可得:乙追上甲的时间为(16﹣4)=12分;
    故③符合题意;
    乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,
    故④符合题意;
    故正确的结论为:①②③④,
    故选:D.
    本题考查了一次函数的应用,明确题意,读懂函数图像,是解题的关键.
    3、A
    【解析】
    根据DE∥AC、DF∥AB即可得出四边形AEDF为平行四边形,再根据AD平分∠BAC即可得出∠FAD=∠FDA,即FA=FD,从而得出平行四边形AEDF为菱形,根据菱形的性质结合AF=6即可求出四边形AEDF的周长.
    【详解】
    ∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠EAD=∠FDA.
    ∵AD平分∠BAC,∴∠EAD=∠FAD=∠FDA,∴FA=FD,∴平行四边形AEDF为菱形.
    ∵AF=6,∴C菱形AEDF=4AF=4×6=1.
    故选A.
    本题考查了菱形的判定与性质,解题的关键是证出四边形AEDF是菱形.本题属于基础题,难度不大,解决该题型题目时,熟记菱形的判定与性质是关键.
    4、D
    【解析】
    ①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;
    ②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;
    ③由整理即可判断结论③正确;
    ④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.
    【详解】
    解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;
    ∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,
    故结论①正确;
    ②将x=-4代入y=nx+4n,得y=-4n+4n=0,
    ∴直线y=nx+4n一定经过点(-4,0).
    故结论②正确;
    ③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,
    ∴当x=-1时,y=1+m=-1n+4n,
    ∴m=1n-1.
    故结论③正确;
    ④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,
    ∴当x>-1时,nx+4n>-x+m,
    故结论④正确.
    故选:D.
    本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.
    5、C
    【解析】
    根据旋转的性质,即可得到点B的坐标.
    【详解】
    解:把点绕原点顺时针旋转,
    ∴点B的坐标为:.
    故选:C.
    本题考查了旋转的性质,解题的关键是熟练掌握点坐标顺时针旋转90°的性质.
    6、B
    【解析】
    根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,CD∥AB,
    ∴∠ACE=∠CAF,(故小雨的结论正确),
    在△EOC和FOA中,

    ∴△EOC≌△FOA,
    ∴OE=OF(故小青的结论正确),
    ∴S△EOC=S△AOF,
    ∴S四边形AFED=S△ADC=S平行四边形ABCD,
    ∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),
    ∵△EOC≌△FOA,
    ∴EC=AF,∵CD=AB,
    ∴DE=FB,DE∥FB,
    ∴四边形DFBE是平行四边形,
    ∵OD=OB,EO⊥DB,
    ∴ED=EB,
    ∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),
    故选B.
    本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.
    7、B
    【解析】
    根据正方形的性质证明△DAE≌△ABF,即可进行判断.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠DAB=∠B=90°,AD=AB,
    ∵AF=DE,
    ∴△DAE≌△ABF(HL),
    ∴∠ADE=∠BAF,∠AED=∠AFB,
    ∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,
    ∴∠DAG=∠AED,
    ∵∠ADE+∠CDG=90°,
    ∴∠CDE=∠AED.
    故选:B.
    此题主要考查正方形的性质,解题的关键是熟知全等三角形的判定与性质.
    8、B
    【解析】
    由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.
    【详解】
    解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;
    ②当4为腰时,符合题意,则周长是2+4+4=1.
    故选:B.
    本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    正方形是特殊的菱形,故根据菱形的面积计算公式即可求正方形ABCD的面积,即可解题.
    【详解】
    如图,
    ∵AC的长为4,
    ∴正方形ABCD的面积为×42=1,
    故答案为:1.
    本题考查了正方形面积的计算,掌握正方形的面积公式是解题关键.
    10、81
    【解析】
    根据平方根的定义即可求解.
    【详解】
    ∵9的平方根为,
    ∴=9,
    所以a=81
    此题主要考查平方根的性质,解题的关键是熟知平方根的定义.
    11、1
    【解析】
    根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.
    【详解】
    解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
    将(0.5,16)、(1.0,17)代入,得: ,
    解得: ,
    ∴L与x之间的函数关系式为:L=2x+15;
    当x=4时,L=2×4+15=1(cm)
    故重物为4kg时弹簧总长L是1cm,
    故答案为1.
    吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.
    12、
    【解析】
    把x=-2代入根式即可求解.
    【详解】
    把x=-2代入得
    此题主要考查二次根式,解题的关键是熟知二次根式的性质.
    13、7
    【解析】
    试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)证明见解析;(3),.
    【解析】
    (1)由正方形的性质可得DC=BC,∠ACB=∠ACD,利用SAS证明△PBC≌△PDC,根据全等三角形的性质可得PD=PB,又因PE=PB,即可证得PD=PE;(2)类比(1)的方法证明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根据等腰三角形的性质可得∠PBC=∠E,所以∠PDC=∠E.因为∠POD=∠COE,根据三角形的内角和定理可得∠DPO=∠OCE=90º;(3)类比(1)的方法证得PD=PE=3;类比(2)的方法证得∠DPE=∠DCE,由平行线的性质可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.
    【详解】
    (1)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,
    在△PBC和△PDC中,
    ∵DC=BC,∠ACB=∠ACD(已证),CP=CP(公共边),
    ∴△PBC≌△PDC.
    ∴PD=PB.
    又∵PE=PB,
    ∴PD=PE;
    (2)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,
    在△PBC和△PDC中,
    ∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)
    ∴△PBC≌△PDC.
    ∴∠PDC=∠PBC.
    又∵PE=PB,∴∠PBC=∠E.
    ∴∠PDC=∠E.
    又∵∠POD=∠COE,
    ∴∠DPO=∠OCE=90º;
    (3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,
    在△PBC和△PDC中,
    ∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)
    ∴△PBC≌△PDC.
    ∴∠PDC=∠PBC,PD=PB.
    又∵PE=PB,
    ∴∠PBC=∠E, PD=PE=3.
    ∴∠PDC=∠E.
    又∵∠POD=∠COE,
    ∴∠DPE=∠DCE;
    ∵AB∥CD,∠ABC=62°,
    ∴∠ABC=∠DCE=62°,
    ∴∠DPE=62°.
    故答案为:3,62°.
    本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等边对等角的性质,熟练运用性质证得∠PDC=∠E是解题的关键.
    15、 (1)y=4x2+5x;(2)n=1.
    【解析】
    (1)先设出二次函数的解析式,然后将已知条件代入其中并解答即可;
    (2)由抛物线的对称轴对称x1+x2=﹣,代入解析式即可求得n的值.
    【详解】
    解:(1)设二次函数的关系式为y=ax2+bx+c(a≠1),
    ∵二次函数的图象经过点(1,1),(﹣1,﹣1),(1,9)三点,
    ∴,解得,
    所以二次函数的解析式是:y=4x2+5x;
    (2)∵二次函数为y=4x2+5x,
    ∴对称轴为直线x=﹣=﹣,
    ∵三点(x1,21),(x2,21),(x1+x2,n)在该二次函数图象上,
    ∴=﹣,
    ∴x1+x2=﹣,
    ∴n=4×(﹣)2+5×(﹣)=1.
    本题主要考查二次函数,掌握二次函数的图象和性质以及待定系数法是解题的关键.
    16、(1)①85.25;②80;③80(2)16
    【解析】
    (1)根据平均数、中位数和众数的计算方法分别计算得出;
    (2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,用总人数40乘以B级及以上所占的百分比的和即可得出结果.
    【详解】
    (1)

    ②总计40个数据,从小到大排列得第20、21位数字都是80分,所以中位数为80
    ③众数即目标样本内相同数字最多的数,由扇形图可知C级所占比例最高,所以众数为80
    (2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,计算可得:(人)
    本题主要考查了条形统计图和扇形统计图的综合运用,以及中位数以及众数的定义,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比,难度不大.
    17、(1)=;(2)①见解析,②见解析;(3)﹣1.
    【解析】
    (1)根据反比例函数的比例系数的几何意义即可作出判断;
    (2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),利用a、b表示出AG、GE、BF、BG的长,即可证得;
    ②求得直线AB的解析式,即可求得M的坐标,即可证明CM=BF,即可证得△ACM≌△NFB,根据全等三角形的对应边相等,即可证得;
    (3)根据AM=BN,且AB=3MN,可以得到AM=BN=MN,则OF=2ON,OM=BF,在y=﹣2x﹣2中,求得M、N的坐标,即可求得B的坐标,代入反比例函数解析式即可求得k的值.
    【详解】
    (1)根据反比例函数k的几何意义可得:S矩形ACOD=S矩形BEOF=|k|,
    故答案为:=;
    (2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),
    则AG=b﹣a,GE=,BF=b,BG=﹣,
    则AG•GE=(b﹣a)•=,
    BF•BG=b(﹣)=,
    ∴AG•GE=BF•BG;
    ②设过A、B的直线的解析式是y=mx+n,则,
    解得:,
    则函数的解析式是:y=﹣x+,
    令y=0,解得:x=a+b,
    则M的横坐标是a+b,
    ∴CM=a+b﹣a=b,
    ∴CM=BF,
    则△ACM≌△NFB,
    ∴AM=BN;
    (3)∵AM=BN,且AB=3MN,
    ∴AM=BN=MN,
    ∴ON=NF,
    在y=﹣2x﹣2中,令x=0,解得:y=﹣2,
    则ON=2,
    令y=0,解得:x=﹣1,则OM=1,
    ∴OF=2ON=1,OM=BF=1
    ∴B的坐标是(1,﹣1),
    把(1,﹣1)代入y=中,得:k=﹣1,
    故答案为:﹣1.
    本题考查的是反比例函数与几何综合题,涉及了反比例函数k的几何意义,待定系数法,全等三角形的判定与性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
    18、(1),y是x的一次函数;(2)点不在这个函数的图象上.
    【解析】
    可设,把已知条件代入可求得k的值,则可求得函数解析式,可求得函数类型;
    把P点坐标代入函数解析式进行判断即可.
    【详解】
    解:设,
    时,,


    ,即,
    故y是x的一次函数;

    当时,,
    点P不在这个函数的图象上.
    本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(2n-1-1,2n-1)
    【解析】
    首先求得直线的解析式,分别求得,,,…的坐标,可以得到一定的规律,据此即可求解.
    【详解】
    】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
    ∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,
    ∴A1的坐标是(0,1),A2的坐标是:(1,2),
    代入y=kx+b得

    解得:

    则直线的解析式是:y=x+1.
    ∵A1B1=1,点B2的坐标为(3,2),
    ∴A1的纵坐标是1,A2的纵坐标是2.
    在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22;
    则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23;
    据此可以得到An的纵坐标是:2n-1,横坐标是:2n-1-1.
    故点An的坐标为 (2n-1-1,2n-1).
    故答案是:(2n-1-1,2n-1).
    本题主要考查了待定系数法求函数解析式,正确得到点的坐标的规律是解题的关键.
    20、
    【解析】
    根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.
    【详解】
    沿直线翻折,点落在点处,
    ,,
    正方形对边,



    设,,

    ,,
    在中,由勾股定理得,,
    即,
    解得,
    所以,,
    所以,.
    故答案为:
    本题考查了翻折变换的性质,正方形的性质,勾股定理,翻折前后对应线段相等,对应角相等,此类题目,关键在于利用勾股定理列出方程.
    21、175°
    【解析】
    如图所示,∵∠ADC、∠BCD的平分线交于点O1,
    ∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
    ∵∠O1DC、∠O1CD的平分线交于点O2,
    ∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
    同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
    由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
    ∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
    又∵四边形ABCD中,∠DAB+∠ABC=200°,
    ∴∠ADC+∠DCB=160°,
    ∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
    故答案为175°.
    22、1.08×10-5
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.0000108=1.08×10-5.
    故答案为1.08×10-5.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    23、1
    【解析】
    由已知可得相邻两边的和为9,较短边长为xcm,则较长边长为2x,解方程x+2x=9即可.
    【详解】
    因为平行四边形周长为18cm,所以相邻两边的长度之和为9cm.设较短边长为xcm,则较长边长为2x,所以x+2x=9,解得x=1.故答案为1.
    本题主要考查了平行四边形的性质,解决平行四边形周长问题一定要熟记平行四边形周长等于两邻边和的2倍.
    二、解答题(本大题共3个小题,共30分)
    24、(1)设y=kx+b,当x=0时,y=2,当x=150时,y=1.
    ∴ 150k+b=1 b="2"
    解得
    ∴y=x+2.
    (2)当x=400时,y=×400+2=5>3.
    ∴他们能在汽车报警前回到家.
    【解析】
    (1)先设出一次函数关系式,再根据待定系数法即可求得函数关系式;
    (2)把x=400代入一次函数关系式计算出y的值即可得到结果.
    25、130°
    【解析】
    先根据∠2与∠3互补,∠3=140°,得出AB∥CD,∠2=40°,再根据∠1和∠2互余,得到∠1的度数,最后根据平行线的性质,即可得到∠4的度数.
    【详解】
    ∵∠2与∠3互补,∠3=140°,
    ∴AB∥CD,∠2=180°-140°=40°,
    又∵∠1和∠2互余,
    ∴∠1=90°-40°=50°,
    ∵AB∥CD,
    ∴∠4=180°-∠1=180°-50°=130°.
    本题主要考查了平行线的性质与判定以及余角和补角计算的应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
    26、见解析.
    【解析】
    连接AC,利用平行四边形的性质易证△ADC≌△CBA,由全等三角形的性质:对应边相等即可得到平行四边形的两组对边分别相等.
    【详解】
    已知:
    求证:
    证明:连接
    四边形是平行四边形
    ABC≌CDA
    本题考查了平行四边形的性质,属于证明命题的题目,此类题目解题的步骤是,先画出图形,再根据图形和原命题写出已知、求证和证明.
    题号





    总分
    得分
    弹簧总长L(cm)
    16
    17
    18
    19
    20
    重物质量x(kg)
    0.5
    1.0
    1.5
    2.0
    2.5
    平均数(分)
    中位数(分)
    众数(分)
    八(1)班
    83.75
    80
    八(2)班
    80
    平均数(分)
    中位数(分)
    众数(分)
    八(1)班
    83.75
    80
    ③80
    八(2)班
    ①85.25
    ②80
    80

    相关试卷

    甘肃省凉州区金羊镇皇台九制学校2023-2024学年九年级数学第一学期期末预测试题含答案:

    这是一份甘肃省凉州区金羊镇皇台九制学校2023-2024学年九年级数学第一学期期末预测试题含答案,共7页。试卷主要包含了二次函数的最小值是等内容,欢迎下载使用。

    甘肃省武威市凉州区金羊镇皇台小2023-2024学年数学九上期末复习检测模拟试题含答案:

    这是一份甘肃省武威市凉州区金羊镇皇台小2023-2024学年数学九上期末复习检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,化简的结果是等内容,欢迎下载使用。

    甘肃省凉州区金羊镇皇台九制学校2023-2024学年八年级数学第一学期期末考试模拟试题含答案:

    这是一份甘肃省凉州区金羊镇皇台九制学校2023-2024学年八年级数学第一学期期末考试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列语句中,是命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map