2025届福建省厦门市五校数学九上开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,当x<0时,y随x的增大而减小的是( )
A.y=xB.y=2x–1C.y=D.y=–
2、(4分)如图,在中,,则的长为( )
A.2B.4C.6D.8
3、(4分)下列函数中,y随x的增大而减小的有( )
①y=﹣2x+1;②y=6﹣x;③y=-;④y=(1﹣)x.
A.1个B.2个C.3个D.4个
4、(4分)不等式组的解集为( )
A.x>B.x>1C.<x<1D.空集
5、(4分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①②B.②③C.①③D.②④
6、(4分)用配方法解方程,则方程可变形为( )
A.B.C.D.
7、(4分)如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是( )平方厘米.()
A.18B.7.74C.9D.28.26
8、(4分)如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为
10、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
11、(4分)如图,已知是等边三角形,点在边上,以为边向左作等边,连结,作交于点,若,,则________.
12、(4分)若关于的一元二次方程的一个根是,则的值是_______.
13、(4分)如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知是方程的两个实数根,且.
(1)求的值;
(2)求的值.
15、(8分)已知函数.
(1)若这个函数的图象经过原点,求的值
(2)若这个函数的图象不经过第二象限,求的取值范围.
16、(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:
根据以上信息解答以下问题:
(1)本次抽查的学生共有多少名,并补全条形统计图;
(2)写出被抽查学生的体育锻炼时间的众数和中位数;
(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.
17、(10分)某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;
(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?
18、(10分)如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线与轴的交点坐标___________
20、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.
21、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
22、(4分)当时,__.
23、(4分)如图,菱形ABCD中, E为边AD上一点,△ABE沿着BE折叠,点A的对应点F恰好落在边CD上,则___.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如图所示的统计图表.
根据图表中提供的信息,回答下列问题:
(1)在样本中,男生身高的中位数落在________组(填组别序号),女生身高在B组的人数有________人;
(2)在样本中,身高在150≤x<155之间的人数共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人、女生480人,请估计身高在155≤x<165之间的学生有多少人
25、(10分)我市某企业安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品,根据市场需求和生产经验,甲产品每件可获利元,乙产品每件可获利元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产件乙产品,当天平均每件获利减少元,设每天安排人生产乙产品.
根据信息填表:
若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
26、(12分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:
(1)在频数分布表中,的值为________,的值为________;
(2)将频数直方图补充完整;
(3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据正比例函数、一次函数、反比例函数的性质依次判断即可.
【详解】
A、为一次函数,k的值大于0,y随x的增大而增大,不符合题意;
B、为一次函数,k的值大于0,y随x的增大而增大,不符合题意;
C、为反比例函数,k的值大于0,x<0时,y随x的增大而减小,符合题意;
D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;
故选C.
此题考查正比例函数的性质,一次函数的性质,反比例函数的性质,熟记各性质定理并熟练解题是关键.
2、B
【解析】
由平行四边形的对角线互相平分,可得AO的长度.
【详解】
在中,,
∴AO=
故答案为B
本题考查了平行四边形对角线互相平分的性质,利用该性质是解题的关键.
3、D
【解析】
①中,k=-2<0;②中,k=-1<0;③中,k=-<0;④中,k=-<0.
根据一次函数y=kx+b(k≠0)的性质,k<0时,y随x的增大而减小.
故①②③④都符合.
故选D.
点睛:本题考查一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
4、B
【解析】
先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.
【详解】
解不等式2x>1-x,得:x>,
解不等式x+2<4x-1,得:x>1,
则不等式组的解集为x>1,
故选B.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
6、D
【解析】
先化二次项的系数为1,然后把常数项移到右边,再两边加上一次项系数一半的平方,把方程的左边配成完全平方的形式.
【详解】
系数化为1得:
移项:
配方:
即
本题考查用配方法解一元二次方程的步骤,熟练掌握配方法解方程是本题关键
7、B
【解析】
【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.
【详解】因为6×6=36,所以正方形的边长是6厘米
36-3.14×(6÷2)2
=36-28.26
=7.74(平方厘米)
故选:B
【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.
8、D
【解析】
根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y与x的函数关系式.
【详解】
当0≤x≤4时,点P在AD边上运动
则y=(x+4)4=2x+8
当4≤x≤8时,点P在DC边上运动
则y═(8-x+4)4=-2x+24
根据函数关系式,可知D正确
故选D.
本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:∵AH=2,HB=1,
∴AB=AH+BH=3,
∵l1∥l2∥l3,
∴
考点:平行线分线段成比例.
10、3,5.4,6,6.5
【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
【详解】
点在上,时,秒;
点在上,时,过点作交于点,
点在上,时,
④点在上,时,过点作交于点,
为的中位线
,
本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
11、
【解析】
证明△BAE≌△CAD得到,从而证得,再得到AEBF是平行四边形,可得AE=BF,在三角形BCF中求出BF即可.
【详解】
作于H,
∵是等边三角形,,
BC=AC=6
在中, CF=4,
∵是等边三角形,是等边三角形
AC=AB,AD=AE,
∵
AEBF是平行四边形
AE=BF=
本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
12、
【解析】
把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.
【详解】
解:把x=0代入方程(a-1)x2+x+a2-1=0得a2-1=0,解得a1=1,a2=-1,
而a-1≠0,
所以a=-1.
故答案为:-1.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
13、
【解析】
根据勾股定理和已知条件,找出线段长度的变化规律,从而求出的长度,然后根据三角形的面积公式求面积即可.
【详解】
解:∵OP=1,过P作PP1⊥OP且PP1=1,得OP1=
再过P1作P1P2⊥OP1且P1P2=1,得OP2=
又过P2作P2P3⊥OP2且P2P3=1,得OP3=
∴PnPn+1=1,OPn=
∴P2014P2015=1,OP2014=
∴=P2014P2015·OP2014=
故答案为:.
此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)利用根与系数的关系得到x1+x2=2,x1x2=q,则通过解方程组,可得,然后计算q的值;
(2)先利用一元二次方程根的定义得到x12=2x1+2,则x13=6x1+4,所以x13-3x12-2x2+3化为-2x2+1,然后把x2=1+代入计算即可.
【详解】
解:(1)根据题意得x1+x2=2,x1x2=q,
由,可得.
所以, .
(2)∵x1是方程x2-2x-2=0的实数根,,∴,即,
.
本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,.
15、(1)的值为3;(2)的取值范围为:.
【解析】
(1)将原点坐标(0,0)代入解析式即可得到m的值;
(2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.
【详解】
(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,
所求的m的值为3;
(2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;
②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−
此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.
16、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名
【解析】
(1) 本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数 =抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;
(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;
(3)该校学生一周体育锻炼时间不低于9小时的估计人数 =该校学生总数×一周体育锻炼时间不低于9小时的频率.
【详解】
(1)解:本次抽查的学生共有8÷20%=40(名)
一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)
条形图补充如下:
(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8
将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5
(3)解:1800× =900(名)
答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.
此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.
17、(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
【解析】
(1)分别根据:未超过20吨时,水费y=2×相应吨数;超过20吨时,水费y=2×20+超过20吨的吨数×2.5;列出函数解析式;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,然后依据两个月共交水费95元列方程求解即可.
【详解】
解:(1)当0≤x≤20时,y=2x;
当x>20时,y=2×20+2.5(x﹣20)=2.5x﹣10;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,.
根据题意,得:2m+2.5(45﹣m)﹣10=95,
解得:m=1.
答:该户居民5月份用水1吨,6月份用水量为30吨.
故答案为(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
本题考查了一次函数的应用、一元一次方程的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.
18、
【解析】
在中,,
∴
∴,
∴
在中,,
∴
∴.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(0,-3)
【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.
【详解】
解:由题意得:当x=0时,y=2×0-3=-3,
即直线与y轴交点坐标为(0,-3),
故答案为(0,-3).
本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.
20、1或
【解析】
因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.
【详解】
解:①当12为斜边时,则第三边==;
②当12是直角边时,第三边==1.
故答案为:1或.
本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.
21、
【解析】
本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.
【详解】
解:根据题意得:
,
整理得:;
则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;
故答案为:.
本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.
22、
【解析】
将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.
【详解】
解:当x=1-时,
x2-2x+2028=(x-1)2+2027
=(1--1)2+2027
=(-)2+2027,
=3+2027
=1,
故答案为:1.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.
23、35°
【解析】
由菱形的性质可得AB∥CD,AB=BC,∠A=∠C=70°,由平行线的性质可得∠BFC=∠ABF,由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF,等角代换可得∠ABF的度数,进而即可求解.
【详解】
∵四边形ABCD是菱形,
∴AB∥CD,AB=BC,∠A=∠C=70°
∴∠BFC=∠ABF
由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF
∴BC=BF
∴∠BFC=∠ABF=∠C=70°
∴∠ABE=∠ABF=35°
故答案为:35°.
本题主要考查菱形的性质和翻折的性质,解题的关键是利用菱形的性质和翻折的性质求出∠ABF的度数.
二、解答题(本大题共3个小题,共30分)
24、(1)D;12;(2)16;C;(3)身高在155≤x<165之间的学生约有541人.
【解析】
从频数分布直方图可得到男生的总人数,则中位数是第20、21个人身高的平均数,女生与男生人数相同,由此可得到题(1)的答案;
结合上步所得以及各组的人数可求出身高在150≤x<155的总人数和身高最多的组别,从而解决(2);对于(3),可根据两幅统计图得到男女生身高在155≤x<165之间的学生的百分率,从而使问题得以解决.
【详解】
解:(1)因为在样本中,共有男生2+4+8+12+14=40(人),
所以中位数是第20、21个人身高的平均数,而2+4+12=18人,
所以男生身高的中位数位于D组,
女生身高在B组的人数有40×(1-30%-20%-15%-5%)=12(人).
(2)在样本中,身高在150≤x<155之间的人数共有4+12=16(人),身高人数最多的在C组;
(3)500× +480×(30%+15%)=541(人),
故估计身高在155≤x<165之间的学生约有541人.
本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.
25、(1)2(65−x),120−2x;(2)该企业每天生产甲、乙产品可获得总利润是1元.
【解析】
(1)设每天安排x人生产乙产品,则每天安排(65−x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120−2x)元,每天可生产2(65−x)件甲产品,此问得解;
(2)由总利润=每件产品的利润×生产数量,结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值得到x值,然后再计算总利润即可.
【详解】
解:(1)设每天安排x人生产乙产品,则每天安排(65−x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120−2x)元,每天可生产2(65−x)件甲产品.
填表如下:
(2)依题意,得:15×2(65−x)−(120−2x)•x=650,
整理得:x2−75x+650=0
解得:x1=10,x2=65(不合题意,舍去),
∴15×2(65−x)+(120−2x)•x=1.
答:该企业每天生产甲、乙产品可获得总利润是1元.
本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
26、(1)10,0.1;(2)答案见解析;(3)占全班总人数百分比为.
【解析】
(1)先计算参加数学測验的总人数,根据a=总人数-各分数段的人的和计算即可得解,b=1-各分数段的频率的和计算即可得解;
(2)根据(1)补全直方图;
(3)求出成绩在分以上(含)的学生人数除以总人数即可.
【详解】
(1)∵参加数学測验的总人数为:
∴,
(2) 如图:该直方图为所求作.
.
(3)成绩在分以上的学生人数为人,全班总人数为人,
占全班总人数百分比为
本题考查了频数(率)分布直方图及频数(率)分布表;概率公式,掌握频数分布直方图及频数分布表是解题的关键
题号
一
二
三
四
五
总分
得分
批阅人
组别
身高(cm)
A
x<150
B
150≤x<155
C
155≤x<160
D
160≤x<165
E
x≥165
产品种类
每天工人数(人)
每天产量(件)
每件产品可获利润(元)
甲
乙
成绩
频数(人数)
频率
产品种类
每天工人数(人)
每天产量(件)
每件产品可获利润(元)
甲
2(65−x)
乙
120−2x
2025届福建省厦门市第五中学数学九上开学统考模拟试题【含答案】: 这是一份2025届福建省厦门市第五中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】: 这是一份2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省厦门市思明区大同中学九上数学开学质量检测试题【含答案】: 这是一份2024年福建省厦门市思明区大同中学九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。