|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年福建省晋江安海片区五校联考数学九上开学教学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年福建省晋江安海片区五校联考数学九上开学教学质量检测模拟试题【含答案】01
    2024年福建省晋江安海片区五校联考数学九上开学教学质量检测模拟试题【含答案】02
    2024年福建省晋江安海片区五校联考数学九上开学教学质量检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年福建省晋江安海片区五校联考数学九上开学教学质量检测模拟试题【含答案】

    展开
    这是一份2024年福建省晋江安海片区五校联考数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知:以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,则这个三角形是( )
    A.等腰三角形B.直角三角形
    C.等边三角形D.等腰直角三角形
    2、(4分)某种出租车的收费标准是:起步价8元(即距离不超过,都付8元车费),超过以后,每增加,加收1.2元(不足按计).若某人乘这种出租车从甲地到乙地经过的路程是,共付车费14元,那么的最大值是( ).
    A.6B.7C.8D.9
    3、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是( )
    A.
    B.
    C.
    D.
    4、(4分)欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax=b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是( )
    A.ACB.ADC.ABD.BC
    5、(4分)一元二次方程根的情况是
    A.有两个相等的实数根B.有两个不相等的实数根
    C.没有实数根D.不能确定
    6、(4分)一次函数 y  2x  2 的大致图象是( )
    A.B.C.D.
    7、(4分)的平方根是( )
    A.B.C.D.
    8、(4分)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40% 、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为 ( )
    A.92B.88C.90D.95
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.
    10、(4分)在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 .
    11、(4分)若的整数部分是a,小数部分是b,则______.
    12、(4分)如图,已知中,,平分,点是的中点,若,则的长为________。
    13、(4分)已知反比例函数 y=的图像都过A(1,3)则m=______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC
    于点E、F、G,连接DE、DG.
    (1)求证:四边形DGCE是菱形;
    (2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.
    15、(8分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:
    已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.
    小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:
    建立适合的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点的坐标,从而可求得△BPC的面积.
    请你按照小明的思路解决这道思考题.
    16、(8分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
    17、(10分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF
    求证:AC、EF互相平分.
    18、(10分)如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.
    (1)在图中,求证:,.
    (2)在图中,仍有(1)中的,成立,请解答下面问题:
    ①若,,,求和的长;
    ②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一组数据,,的方差为4,那么数据,,的方差是___________.
    20、(4分)已知方程的一个根为2,则________.
    21、(4分)如图,一次函数y=ax+b的图象经过A(0,1)和B(2,0)两点,则关于x的不等式ax+b<1的解集是_____.
    22、(4分)计算:____________.
    23、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值
    解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±1因为2m2+n2≥0,所以2m2+n2=1.
    上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
    根据以上阅读材料内容,解决下列问题,并写出解答过程.
    已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
    25、(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:
    原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF,求证:EF=BE+DF.

    解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,易得,可证.再证明,得EF=FG=DG+FD=BE+DF.
    问题(1):如图2,在四边形ABCD中,AB=AD,,E,F分别是边BC,CD上的点,且,求证:EF=BE+FD;

    问题(2):如图3,在四边形ABCD中,,,AB=AD=1,点E,F分别在四边形ABCD的边BC,CD上的点,且,求此时的周长
    26、(12分)如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.
    (1)求证AD=ED;
    (2)若AC=AB,DE=3,求AC的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据题意得到a-b=0或b-c=0,从而得到a=b或b=c,得到该三角形为等腰三角形.
    【详解】
    解:因为以a,b,c为边的三角形满足(a﹣b)(b﹣c)=0,
    所以a﹣b=0或b﹣c=0,
    得到a=b或b=c,
    所以三角形为等腰三角形,
    故选:A.
    本题考查等腰三角形,解题的关键是掌握等腰三角形的性质.
    2、C
    【解析】
    已知从甲地到乙地共需支付车费14元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.
    【详解】
    设某人从甲地到乙地经过的路程是x千米,根据题意,
    得:8+1.2(x−3)⩽14,
    解得:x⩽8,
    即x的最大值为8km,
    故选C.
    此题考查一元一次不等式的应用,解题关键在于列出方程
    3、A
    【解析】
    连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.
    【详解】
    解:如图,连接AC与BD相交于O,
    在▱ABCD中,OA=OC,OB=OD,
    要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
    A、AF=EF无法证明得到OE=OF,故本选项正确.
    B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
    C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
    D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
    故选:A.
    本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.
    4、B
    【解析】
    解一元二次方程,由求根公式求得, 已知AC、BC,由勾股定理求得AB,则AD等于AB和BD之差,比较AD的长度和x的解即可知结论.
    【详解】
    x2+ax=b2 ,
    即x2+ax-b2=0 ,

    ∵∠ACB=90°,
    ∴AB=,

    故答案为:B.
    本题主要考查一元二次方程的根,与勾股定理,解题关键在于能够求出AB的长度.
    5、C
    【解析】
    由△=b2-4ac的情况进行分析.
    【详解】
    因为,△=b2-4ac=(-3)2-4×1×3=-3<0,
    所以,方程没有实数根.
    故选C
    本题考核知识点:根判别式. 解题关键点:熟记一元二次方程根判别式.
    6、A
    【解析】
    先判断出k、b的值,再根据一次函数的性质可画出函数的大致图象.
    【详解】
    解:∵k=2,b=-2,
    ∴函数y=2x-2的图象经过第一、三、四象限.
    故选:A.
    一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
    7、B
    【解析】
    根据开平方的意义,可得一个数的平方根.
    【详解】
    解:9的平方根是±3,
    故选:B.
    本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.
    8、C
    【解析】
    分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40% +10%=1.
    详解:由题意得,
    85×50%+95×40%+95×10%=90(分).
    点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x <-2
    【解析】
    【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.
    【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.
    所以,的解集为x<-2.
    故答案为x<-2
    【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.
    10、1或2或4
    【解析】
    如图1:
    当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;
    如图2:
    当∠C=10°时,∠ABC=30°,
    ∵∠ABP=30°,
    ∴∠CBP=10°,
    ∴△PBC是等边三角形,
    ∴CP=BC=1;
    如图3:
    当∠ABC=10°时,∠C=30°,
    ∵∠ABP=30°,
    ∴∠PBC=10°﹣30°=30°,
    ∴PC=PB,
    ∵BC=1,
    ∴AB=3,
    ∴PC=PB===2
    如图4:
    当∠ABC=10°时,∠C=30°,
    ∵∠ABP=30°,
    ∴∠PBC=10°+30°=90°,
    ∴PC=BC÷cs30°=4.
    故答案为1或2或4.
    考点:解直角三角形
    11、1.
    【解析】
    若的整数部分为a,小数部分为b,
    ∴a=1,b=,
    ∴a-b==1.
    故答案为1.
    12、1
    【解析】
    根据等腰三角形的性质可得D是BC的中点,再根据三角形中位线定理即可求解.
    【详解】
    解:∵AB=AC,AD平分∠BAC,
    ∴CD=BD,
    ∵E是AB的中点,
    ∴DE∥AC,DE=,
    ∵AC=6,
    ∴DE=1.
    故答案为:1.
    此题主要考查了等腰三角形的性质,以及三角形中位线定理,关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的知识点.
    13、1.
    【解析】
    把点A(1,1)代入函解析式即可求出m的值.
    【详解】
    解:把点A(1,1)代入函解析式得1=,解得m=1.
    故答案为:1.
    本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)BG= 5+5.
    【解析】
    (1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;
    (2)过点D作DH⊥BC,由锐角三角函数可求DH的长,GH的长,BH的长,即可求BG的长.
    【详解】
    (1)∵CD平分∠ACB,
    ∴∠ACD=∠DCG
    ∵EG垂直平分CD,
    ∴DG=CC,DE=EC
    ∴∠DCG=∠GDC,∠ACD=∠EDC
    ∴∠EDC=∠DCG=∠ACD=∠GDC
    ∴CE∥DG,DE∥GC
    ∴四边形DECG是平行四边形
    又∵DE=EC
    ∴四边形DGCE是菱形
    (2)如图,过点D作DH⊥BC,
    ∵四边形DGCE是菱形,
    ∴DE=DG=GC=10,DG∥EC
    ∴∠ACB=∠DGB=30°,且DH⊥BC
    ∴DH=5,HG=DH=5
    ∵∠B=45°,DH⊥BC
    ∴∠B=∠BDH=45°
    ∴BH=DH=5
    ∴BG=BH+HG=5+5
    本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.
    15、见解析
    【解析】
    解:如图,以为原点,为轴,为轴建立坐标系,
    ∵,,为长方形,
    ∴,,,
    ∵为中点,
    ∴,
    直线过,,
    ∴的表达式为.
    设表达式为,
    将,和,代入得:

    解得:,
    ∴表达式为,
    联立,解得:,
    ∴,

    16、甲种水稻出苗更整齐
    【解析】
    根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.
    【详解】
    解:(厘米),
    (厘米),
    (厘米),
    (厘米),
    ∵,
    ∴甲种水稻出苗更整齐.
    本题考查平均数、方差的计算及意义,需熟记计算公式.
    17、证明见解析
    【解析】
    连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.
    【详解】
    解:连接AE、CF,
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD﹦BC,
    又∵DF﹦BE,
    ∴AF﹦CE,
    又∵AF∥CE,
    ∴四边形AECF为平行四边形,
    ∴AC、EF互相平分.
    本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.
    18、(1)见解析;(2)①,,②,,见解析.
    【解析】
    (1)由平行线的性质和角平分线的性质即可证明结论;
    (2)①由(1)题的思路可求得FG的长,再证明△BCG是等边三角形,从而得,过点作交延长线于点,在Rt△AFH中用勾股定理即可求出AF的长;
    ②若使点恰好落在边上且为等腰三角形,易得F、G两点重合于点E,再结合(1)(2)的结论进行分析即可得到结论.
    【详解】
    解:(1)∵四边形是平行四边形,∴,.
    ∴,
    又∵、是与的角平分线,
    ∴,即∠AEB=90°,
    ∴,
    ∵,∴,
    又∵是的角平分线、
    ∴,
    ∴.
    同理可得.
    ∴;
    (2)解:①由已知可得,、仍是与的角平分线且,
    ,,,
    .
    如图,过点作交延长线于点.
    ∵,,.
    .
    ∵,,,
    ,,,
    .
    ②,(类似答案均可).
    若使点恰好落在边上,则易得F、G两点重合于点E,又由(1)(2)的结论知,,所以平行四边形的边应满足;
    若使点恰好落在边上且为等腰三角形,则EA=EB,所以∠EAB=∠EBA,
    又因为、仍是与的角平分线,所以∠CBA=∠BAD=90°,所以∠C=90°.
    本题考查了平行四边形的性质、角平分线的概念、平行线的性质、垂直的定义、等腰三角形和等边三角形的判定和性质、勾股定理和30°角的直角三角形的性质,考查的知识点多,综合性强,解题的关键是熟练掌握上述知识,弄清题意,理清思路,注重知识的前后联系.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4
    【解析】
    设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.
    【详解】
    设数据,,的平均数为m,
    则有a+b+c=3m,=4,
    ∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,
    方差为:
    ==4,
    故答案为:4.
    本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
    20、
    【解析】
    把x=2代入原方程,得到一个关于k的方程,求解可得答案.
    【详解】
    解:把x=2代入方程3x2+kx-2=0得3×4+2k-2=0,
    解得k=-1.
    故答案为-1.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    21、x>1
    【解析】
    观察函数图象,写出在y轴右侧的自变量的取值范围即可.
    【详解】
    当x>1时,ax+b<1,
    即不等式ax+b<1的解集为x>1.
    故答案为:x>1
    本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    22、﹣1
    【解析】
    首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
    【详解】
    原式=﹣8+1+1+3=﹣1.
    故答案为:﹣1.
    本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.
    23、m<1
    【解析】
    一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.
    【详解】
    ∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,
    ∴m-1<2,
    解得:m<1,
    故答案是:m<1.
    本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    设t=x2+y2(t≥0),将原方程转化为(4t+3)(4t﹣3)=27,求出t的值,即可解答.
    【详解】
    解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,
    整理,得
    16t2﹣1=27,
    所以t2= .
    ∵t≥0,
    ∴t= .
    ∴x2+y2的值是.
    此题考查换元法解一元二次方程,解题关键在于利用换元法解题.
    25、(1),见解析;(2)周长为.
    【解析】
    (1)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
    (2)连接AC,证明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可计算△CEF的周长.
    【详解】
    证明:(1)在CD的延长线上截取DG=BE,连接AG,如图2,
    ∵∠ADF=90°,∠ADF+∠ADG=180°,
    ∴∠ADG=90°,
    ∵∠B=90°,
    ∴∠B=∠ADG=90°,
    ∵BE=DG,AB=AD,
    ∴△ABE≌△ADG(SAS),
    ∴∠BAE=∠DAG,AG=AE,
    ∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
    ∵∠EAF=∠BAD,
    ∵∠EAG=∠EAG=(∠EAF+∠FAG),
    ∴∠EAF=∠FAG,
    又∵AF=AF,AE=AG,
    ∴△AEF≌△AFG(SAS),
    ∴EF=FG=DF+DG=EB+DF;
    (2)解:连接AC,如图3,
    ∵AB=AD,BC=CD,AC=AC,
    ∴△ABC≌△ADC(SSS).
    ∴∠DAC=∠BAC,
    ∴∠BAC=∠BAD=60°,
    ∵∠B=90°,AB=1,
    ∴在Rt△ABC中,AC=2,BC===,
    由(1)得EF=BE+DF,
    ∴△CEF的周长=CE+CF+EF=2BC=2.
    本题是四边形的综合题,考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形,难度适中.
    26、 (1)证明见解析;(2)6.
    【解析】
    (1)由AE是∠BAC的角平分线可得∠DAE=∠BAE,由DE∥AB,可得∠DEA=∠EAB,则∠DEA=∠DAE,可得结论.
    (2)根据等腰三角形三线合一可得AE⊥BC,可证∠C=∠CED则CD=DE,即可求AC的长.
    【详解】
    证明:(1)∵AE是∠BAC的角平分线
    ∴∠DAE=∠BAE,
    ∵DE∥AB
    ∴∠DEA=∠EAB,
    ∴∠DAE=∠DEA,
    ∴AD=DE-;
    (2)∵AB=AC,AE是∠BAC的角平分线
    ∴AE⊥BC
    ∴∠C+∠CAE=90°,∠CED+∠DEA=90°,
    ∵∠CAE=∠DEA,
    ∴∠C=∠CED,
    ∴DE=CD,
    ∴AD=DE=CD=3,
    ∴AC=6.
    故答案为(1)证明见解析;(2)6.
    本题考查等腰三角形的性质和判定,平行线的性质,关键是利用这些性质解决问题.
    题号





    总分
    得分
    编号
    1
    2
    3
    4
    5

    12
    13
    14
    15
    16

    13
    14
    16
    12
    10
    相关试卷

    2024-2025学年山东省淄博周村区五校联考九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省淄博周村区五校联考九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省晋江安海片区五校联考2023-2024学年九上数学期末统考模拟试题含答案: 这是一份福建省晋江安海片区五校联考2023-2024学年九上数学期末统考模拟试题含答案,共7页。

    福建省汀东教研片六校联考2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份福建省汀东教研片六校联考2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了已知,则为,下列命题正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map