|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】01
    2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】02
    2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】

    展开
    这是一份2025届福建省泉州洛江区七校联考九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )
    A.B.C.D.
    2、(4分)方程①=1;②x2=7;③x+y=1;④xy=1.其中为一元二次方程的序号是( )
    A.①B.②C.③D.④
    3、(4分)关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,则k的取值范围( )
    A.B.且k≠0C.D.且k≠0
    4、(4分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
    A.ax(x2﹣2x)B.ax2(x﹣2)
    C.ax(x+1)(x﹣1)D.ax(x﹣1)2
    5、(4分)如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为( )
    A.3B.C.D.4
    6、(4分)关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
    A.B.C.且D.且
    7、(4分)四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是( )
    A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
    8、(4分)甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是( )
    A.货车的速度是60千米/小时
    B.离开出发地后,两车第一次相遇时,距离出发地150千米
    C.货车从出发地到终点共用时7小时
    D.客车到达终点时,两车相距180千米
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算:_____.
    10、(4分)不等式3x+1<-2的解集是________.
    11、(4分)小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.
    12、(4分)如图,在正方形ABCD中,延长BC至E,使CE=CA,则∠E的度数是_____.
    13、(4分)如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
    (1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
    (2)在(1)的条件下,求证:△ABE≌△CDF.
    15、(8分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.
    (1)分别求出AB,BC,AC的长;
    (2)试判断△ABC是什么三角形,并说明理由.
    16、(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
    (1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
    (2) 请画出△ABC关于原点对称的△ABC;
    (3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
    17、(10分)已知:矩形ABCD中,AB=10,AD=8,点E是BC边上一个动点,将△ABE沿AE折叠得到△AB′E。
    (1)如图(1),点G和点H分别是AD和AB′的中点,若点B′在边DC上。
    ①求GH的长;
    ②求证:△AGH≌△B′CE;
    (2)如图(2),若点F是AE的中点,连接B′F,B′F∥AD,交DC于I。
    ①求证:四边形BEB′F是菱形;
    ②求B′F的长。
    18、(10分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.
    20、(4分)如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为24,则k=____.
    21、(4分)若关于x的方程产生增根,那么 m的值是______.
    22、(4分)如图,矩形中,是上一点(不与重合),点在边上运动,分别是的中点,线段长度的最大值是__________.
    23、(4分)一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(问题原型)在图①的矩形中,点、、、分别在、、、上,若,则称四边形为矩形的反射四边形;
    (操作与探索)在图②,图③的矩形中,,,点、分别在、边的格点上,试利用正方形网格分别在图②、图③上作矩形的反射四边形;
    (发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形中,,,则其反射四边形的周长为______.
    25、(10分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形( )
    A.1个B.2个C.3个D.4个
    26、(12分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.
    (1)求证:四边形ADEF为平行四边形;
    (2)当点D为AB中点时,判断▱ADEF的形状;
    (3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    ∵正比例函数且随的增大而减少,

    在直线中,

    ∴函数图象经过一、三、四象限.
    故选D.
    2、B
    【解析】
    本题根据一元二次方程的定义解答.
    【详解】
    解:其中①为分式方程,②为一元二次方程,③为二元一次方程,④为二元二次方程,
    故选B.
    本题主要考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
    3、B
    【解析】
    根据一元二次方程的定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可.
    【详解】
    ∵关于x的一元二次方程kx2-3x+1=0有两个不相等的实数根,
    ∴k≠0且△=(-3)2-4k×1>0,
    解得:k<且k≠0,
    故选B.
    本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
    4、D
    【解析】
    先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
    【详解】
    原式=ax(x2﹣2x+1)=ax(x﹣1)2,
    故选D.
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    5、D
    【解析】
    由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.
    【详解】
    解:∵翻折后点B恰好与点C重合,
    ∴AE⊥BC,BE=CE,
    ∵BC=AD=6,
    ∴BE=3,
    ∴AE==4,
    故选D.
    本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.
    6、D
    【解析】
    根据方程有两个不相等的实数根,则,结合一元二次方程的定义,即可求出m的取值范围.
    【详解】
    解:∵一元二次方程有两个不相等的实数根,

    解得:,
    ∵,
    ∴的取值范围是:且;
    故选:D.
    总结一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.
    7、C
    【解析】
    由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.
    【详解】
    如图所示:
    需要添加的条件是AC⊥BD;理由如下:
    ∵四边形ABCD的对角线互相平分,
    ∴四边形ABCD是平行四边形,
    ∵AC⊥BD,
    ∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);
    故选:C.
    考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.
    8、C
    【解析】
    通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.
    【详解】
    解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A错误;
    设客车离开起点x小时后,甲、乙两人第一次相遇,根据题意得:
    100x=60+60x,
    解得:x=1.5,
    ∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),
    故B错误;
    甲从起点到终点共用时为:600÷60=10(小时),
    故C正确;
    ∵客车到达终点时,所用时间为6小时,货车先出发1小时,
    ∴此时货车行走的时间为7小时,
    ∴货车走的路程为:7×60=420(千米),
    ∴客车到达终点时,两车相距:600﹣420=180(千米),故D错误;
    故选C.
    本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    【分析】根据同分母分式加减法的法则进行计算即可得.
    【详解】
    =
    =1,
    故答案为1.
    【点睛】本题考查了同分母分式的加减法,熟练掌握同分母分式加减法的法则是解题的关键.
    10、.
    【解析】
    试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.
    考点:一元一次不等式的解法.
    11、小明
    【解析】
    观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.
    【详解】
    解:根据图象可直接看出小明的成绩波动不大,
    根据方差的意义知,波动越小,成绩越稳定,
    故答案为:小明.
    此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、22.5°
    【解析】
    根据正方形的性质就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=∠E=22.5°.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ACD=∠ACB=45°.
    ∵∠ACB=∠CAE+∠AEC,
    ∴∠CAE+∠AEC=45°.
    ∵CE=AC,
    ∴∠CAE=∠E=22.5°.
    故答案为22.5°
    本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.
    13、2
    【解析】
    作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;
    【详解】
    解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.
    由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,
    ∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,
    在Rt△MGA′中,x2=(9﹣x)2+32,
    ∴x=5,AA′=,
    ∵sin∠MAK=,
    ∴ ,
    ∴MK=,
    ∵AM∥OA′,AK=KA′,
    ∴MK=KO,
    ∵BN∥HA′∥AD,DA′=EA′,
    ∴MO=ON,
    ∴MN=4MK=2,
    故答案为2.
    本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    (1)以点C为圆心,任意长为半径画弧,交CD,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在平行四边形内交于一点,过点C以及这个交点作射线,交AD于点F即可;
    (2)根据ASA即可证明:△ABE≌△CDF.
    【详解】
    (1)如图所示:CF即为所求作的;
    (2)∵四边形ABCD是平行四边形,
    ∴AB=CD,∠B=∠D,∠BAD=∠BCD,
    ∵AE平分∠BAD,CF平分∠BCD,
    ∴∠BAE=∠DCF,
    在△ABE和△CDF中

    ∴△ABE≌△CDF.
    本题考查了平行四边形的性质、全等三角形的判定、尺规作图—作角平分线,熟练掌握尺规作图的方法以及全等三角形的判定方法是解题的关键.
    15、(1),,;(2)是直角三角形,理由见解析
    【解析】
    (1)根据勾股定理即可分别求出AB,BC,AC的长;
    (2)根据勾股定理逆定理即可判断.
    【详解】
    解:(1)根据勾股定理可知:,,;
    (2)是直角三角形,理由如下:
    ,,

    是直角三角形.
    此题考查的是勾股定理和勾股定理的逆定理,掌握用勾股定理解直角三角形和用勾股定理逆定理判定直角三角形是解决此题的关键.
    16、(1)图形见解析;
    (2)图形见解析;
    (3)图形见解析,点P的坐标为:(2,0)
    【解析】
    (1)按题目的要求平移就可以了
    关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
    (3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
    【详解】
    (1)△A1B1C1如图所示;
    (2)△A2B2C2如图所示;
    (3)△PAB如图所示,点P的坐标为:(2,0)
    1、图形的平移;2、中心对称;3、轴对称的应用
    17、(1)①3;②详见解析;(2)①详见解析;②
    【解析】
    (1)①由折叠的性质可得出AB=AB′,根据矩形的性质可得出∠ADB′=90°,在Rt△ADB′中,利用勾股定理即可得出B′D的长度,再根据中位线的性质即可得出结论;
    ②由点G为AD的中点可求出AG的长度,通过边与边的关系可得出B′C=4,由此得出B′C=AG,再通过角的计算得出∠AHG=B′EC,由此即可根据全等三角形的判定定理AAS证出△AGH≌△B′CE;
    (2)①连接BF,由平行线的性质结合直角三角的中线的性质即可得知△B′EF为等边三角形,根据折叠的性质即可证出四边形BEB′F是菱形;
    ②由等边三角形和平行线的性质可得出∠BEF=∠B′EF=60°,再由AB=10利用特殊角的三角函数值即可得出结论.
    【详解】
    (1)①∵将△ABE沿AE折叠得到△AB′E
    ∴AB=AB′
    ∵四边形ABCD为矩形
    ∴∠ADB′=90°
    在Rt△ADB′中,AD=8,AB′=10
    ∴B′D==6
    ∵点G和点H分别是AD和AB′的中点,∴GH为△ADB′的中位线
    ∴GH=DB′=3
    ②证明:∵GH为△ADB′的中位线
    ∵GH∥DC,AG=AD=4
    ∴∠AHG=∠AB′D
    ∵∠AB′E=∠ABE=90°
    ∴∠AB′D+∠CB′E=90°
    又∵∠CB′E+∠B′EC=90°
    ∴∠AHG=B′EC
    ∵CD=AB=10,DB′=6
    ∴B′C=4=AG
    在△AGH和△B′CE中

    ∴△AGH≌△B′CE(AAS).
    (2)①证明:
    ∵将△ABE沿AE折叠得到△AB′E
    ∴BF=B′F,∠B′EF=∠BEF,BE=B′E
    ∵B′F∥AD,AD∥BC
    ∴B′F∥BC
    ∴∠B′FE=∠BEF=∠B′EF
    ∵∠AB′E=∠ABE=90°,点F为线段AE的中点
    ∴B′F=AE=FE
    ∴△B′EF为等边三角形
    ∴B′F=B′E
    ∵BF=B′F,BE=B′E
    ∴B′F=BF=BE=B′E
    ∴四边形BEB′F是菱形
    ②∵△B′EF为等边三角形
    ∴∠BEF=∠B′EF=60°
    ∴BE=AB•ct∠BEF=10×=
    ∵四边形BEB′F是菱形
    ∴B′F=BE=.
    本题考查了折叠的性质、矩形的性质、中位线的性质、全等三角形的判定定理、等边三角形的判定及性质以及菱形的判定定理,解题的关键是:(1)①利用勾股定理求出DB'的长度;②利用全等三角形的判定定理AAS证出△AGH≌△B′CE;(2)①得出B′EF为等边三角形;③利用特殊角的三角函数值求出BE的长度.本题属于中档题,难度不大.但解题过程稍显繁琐,解决该题型题目时,根据图形的翻折找出相等的边角关系是关键.
    18、甲种水稻出苗更整齐
    【解析】
    根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.
    【详解】
    解:(厘米),
    (厘米),
    (厘米),
    (厘米),
    ∵,
    ∴甲种水稻出苗更整齐.
    本题考查平均数、方差的计算及意义,需熟记计算公式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3:1
    【解析】
    根据同高的两个三角形面积之比等于底边之比得,,再由点O是▱ABCD的对角线交点,根据平行四边形的性质可得S△AOB=S△BOC=S▱ABCD,从而得出S1与S1之间的关系.
    【详解】
    解:∵,,
    ∴S1=S△AOB,S1=S△BOC.
    ∵点O是▱ABCD的对角线交点,
    ∴S△AOB=S△BOC=S▱ABCD,
    ∴S1:S1=:=3:1,
    故答案为:3:1.
    本题考查了三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出,是解答本题的关键.
    20、1
    【解析】
    解:设A(x,),B(a,0),过A作AD⊥OB于D,EF⊥OB于F,如图,
    由平行四边形的性质可知AE=EB,
    ∴EF为△ABD的中位线,
    由三角形的中位线定理得:EF=AD=,DF=(a-x),OF=,
    ∴E(,),
    ∵E在双曲线上,
    ∴=k,
    ∴a=3x,
    ∵平行四边形的面积是24,
    ∴a•=3x•=3k=24,解得:k=1.
    故答案为:1.
    21、1
    【解析】
    分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
    【详解】
    分式方程去分母得:x−1=m+2x−4,
    由题意得:x−2=0,即x=2,
    代入整式方程得:2−1=m+4−4,
    解得:m=1.
    故答案为:1.
    此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
    22、5
    【解析】
    根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.
    【详解】
    解:∵矩形ABCD中,AB=6,BC=8 ,
    ∴对角线AC=10,
    ∵P是CD边上的一动点,
    ∴8≤AP≤10,
    连接AP,
    ∵M,N分别是AE、PE的中点,
    ∴MN是△AEP的中位线,
    ∴, MN=AP.
    ∴MN最大长度为5.
    本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.
    23、小于
    【解析】
    先分别求出摸出各种颜色球的概率,再进行比较即可得出答案.
    【详解】
    解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,
    ∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,
    ∴摸出白球可能性<摸出黄球的可能性;
    故答案为小于.
    本题主要考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
    二、解答题(本大题共3个小题,共30分)
    24、操作与探索:见解析:发现与应用:10.
    【解析】
    (1)根据网格作出相等的角即可得到反射四边形;
    (2)延长GH交PN的延长线与点A,证明△FPE≌△FPB,根据全等三角形的性质得到AB=2NP,再证明GA=GB,过点G作GK⊥NP于K,根据等腰三角形的性质求出KB=AB=4,再利用勾股定理求出GB的长,即可求出四边形EFGH的周长.
    【详解】
    (1)作图如下:
    (2)延长GH交PN的延长线与点A,过点G作GK⊥NP于K,
    ∵∠1=∠2,∠1=∠5,∴∠2=∠5,
    又PF=PF,∠FPE=∠FPB,
    ∴△FPE≌△FPB,
    ∴EF=BF,EP=PB,
    同理AH=EH,NA=EN,
    ∴AB=2NP=8,
    ∵∠B=90°-∠5=90°-∠1,∠A=90°-∠3,
    ∴∠A=∠B,∴GA=GB,
    则KB=AB=4,∴GB=
    ∴四边形EFGH的周长为2GB=10.
    此题主要考查矩形的性质,解题的关键是熟知全等三角形的判定与性质.
    25、C
    【解析】
    ①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,
    ②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.
    ③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.
    【详解】
    ①由四边形ABCD是正方形和折叠性知,
    ∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,
    ∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,
    故①正确,
    ②由四边形ABCD是正方形和折叠性得出,
    ∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,
    ∵∠ABF=45°,
    ∴∠ABF=∠DFG,
    ∴AB∥GF,
    又∵∠BAC=∠BEF=45°,
    ∴EF∥AC,
    ∴四边形AEFG是平行四边形,
    ∴四边形AEFG是菱形.
    ∵在Rt△GFO中,GF=OG,
    在Rt△BFE中,BE=EF=GF,
    ∴BE=2OG,
    故②④正确.
    ③由四边形ABCD是正方形和折叠性知,
    AD=FD,AG=FG,DG=DG,
    在△ADG和△FDG中,

    ∴△ADG≌△FDG(SSS),
    ∴S△AGD=S△FDG≠S△OGD
    故③错误.
    正确的有①②④,
    故选C.
    本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.
    26、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.
    【解析】
    (1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;
    (2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;
    (3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.
    【详解】
    (1)证明:∵DE∥AC,
    ∴∠BDE=∠A,
    ∵∠DEF=∠A,
    ∴∠DEF=∠BDE,
    ∴AD∥EF,又∵DE∥AC,
    ∴四边形ADEF为平行四边形;
    (2)解:□ADEF的形状为菱形,
    理由如下:∵点D为AB中点,
    ∴AD=AB,
    ∵DE∥AC,点D为AB中点,
    ∴DE=AC,
    ∵AB=AC,
    ∴AD=DE,
    ∴平行四边形ADEF为菱形,
    (3)四边形AEGF是矩形,
    理由如下:由(1)得,四边形ADEF为平行四边形,
    ∴AF∥DE,AF=DE,
    ∵EG=DE,
    ∴AF∥DE,AF=GE,
    ∴四边形AEGF是平行四边形,
    ∵AD=AG,EG=DE,
    ∴AE⊥EG,
    ∴四边形AEGF是矩形.
    故答案为:(1)证明见解析;(2)菱形;(3)矩形.
    本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.
    题号





    总分
    得分
    编号
    1
    2
    3
    4
    5

    12
    13
    14
    15
    16

    13
    14
    16
    12
    10
    相关试卷

    福建省泉州洛江区七校联考2023-2024学年九年级数学第一学期期末检测试题含答案: 这是一份福建省泉州洛江区七校联考2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中,属于不确定事件的有等内容,欢迎下载使用。

    福建省泉州洛江区七校联考2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份福建省泉州洛江区七校联考2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了某地质学家预测等内容,欢迎下载使用。

    福建省泉州洛江区七校联考2023-2024学年八年级数学第一学期期末检测试题含答案: 这是一份福建省泉州洛江区七校联考2023-2024学年八年级数学第一学期期末检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知是方程的解,则的值是,下列各式中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map