2025届福建省莆田市哲理中学数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列性质中,平行四边形不一定具有的是( )
A.对边相等B.对边平行C.对角互补D.内角和为360°
2、(4分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )
A.BD=CEB.AD=AEC.DA=DED.BE=CD
3、(4分)将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为( )
A.y=﹣3(x﹣2)2+4B.y=﹣3(x﹣2)2﹣2
C.y=﹣3(x+2)2+4D.y=﹣3(x+2)2﹣2
4、(4分)如图,D、E分别为△ABC边AC、BC的中点,∠A=60°,DE=6,则下列判断错误的是( )
A.∠ADE=120°B.AB=12C.∠CDE=60°D.DC=6
5、(4分)如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )
A.等腰梯形B.直角梯形C.菱形D.矩形
6、(4分)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论
①BE⊥AC
②四边形BEFG是平行四边形
③EG=GF
④EA平分∠GEF
其中正确的是( )
A.①②③B.①②④C.①③④D.②③④
7、(4分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x的取值范围是( )
A.7<x≤11B.7≤x<11
C.7<x<11D.7≤x≤11
8、(4分)若关于x的方程有两个相等的实数根,则常数c的值是
A.6B.9C.24D.36
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差、的大小:_____ (填“>”、“<”或“=”)
10、(4分) 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.
11、(4分)下表是某校女子羽毛球队队员的年龄分布:
则该校女子排球队队员年龄的中位数为__________岁.
12、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.
13、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某汽车销售公司经销某品牌款汽车,随着汽车的普及,其价格也在不断下降.今年5月份款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的款汽车,已知款汽车每辆进价为7.5万元,款汽车每辆进价为6万元,公司预计用不多于105万元且不少于102万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)按照(2)中两种汽车进价不变,如果款汽车每辆售价为8万元,为打开款汽车的销路,公司决定每售出一辆款汽车,返还顾客现金万元,要使(2)中所有的方案获利相同,值应是多少?
15、(8分)计算:
(1)|1-2|+.
(2)
16、(8分)某地重视生态建设,大力发展旅游业,各地旅游团纷沓而至,某旅游团上午6时从旅游馆出发,乘汽车到距离的旅游景点观光,该汽车离旅游馆的距离与时间的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:
(1)求该团旅游景点时的平均速度是多少?
(2)该团在旅游景点观光了多少小时?
(3)求该团返回到宾馆的时刻是几时?
17、(10分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)
(1)求这个一次函数的解析式;
(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;
(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值
18、(10分)仔细阅读下面例题,解答问题:
例题:已知二次三项式有一个因式是,求另一个因式以及的值,
解:设另一个因式为,得: ,
则
解得:
另一个因式为,的值为,
问题:仿照以上方法解答下列问题:
已知二次三项式有一个因式是,求另一个因式以及的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式______.
20、(4分)如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.
21、(4分)已知b是a,c的比例中项,若a=4,c=16,则b=________.
22、(4分)如图,正方形的边长为5 cm,是边上一点,cm.动点由点向点运动,速度为2 cm/s ,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.
23、(4分)若关于的方程有增根,则的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知函数y=和y=,A(1,n)、B(m,4)两点均在函数y=的图像上,设两函数y=和y=的图像交于一点P.
(1)求实数m,n的值;
(2)求P,A,B三点构成的三角形PAB的面积.
25、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明.
26、(12分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.
(1)求证:AB=EF;
(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
A、平行四边形的对边相等,故本选项正确;
B、平行四边形的对边平行,故本选项正确;
C、平行四边形的对角相等不一定互补,故本选项错误;
D、平行四边形的内角和为360°,故本选项正确;故选C
2、C
【解析】
根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.
【详解】
解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;
B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;
C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;
D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.
故选C.
3、D
【解析】
根据“左加右减、上加下减”的原则进行解答即可.
【详解】
将抛物线y=﹣3x1+1向左平移1个单位长度所得直线解析式为:y=﹣3(x+1)1+1;
再向下平移3个单位为:y=﹣3(x+1)1+1﹣3,即y=﹣3(x+1)1﹣1.
故选D.
此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
4、D
【解析】
由题意可知:DE是△ABC的中位线,然后根据中位线的性质和平行线的性质逐一判断即可.
【详解】
解:∵D、E分别为△ABC边AC、BC的中点,∴DE∥AB,,
∵∠A=60°,DE=6,∴∠ADE=120°,AB=12,∠CDE=60°,∴A、B、C三项是正确的;
由于AC长度不确定,而,所以DC的长度不确定,所以D是错误的.
故选:D.
本题主要考查了三角形的中位线定理,属于基本题型,熟练掌握三角形的中位线定理是解题关键.
5、D
【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.
【详解】
解:连接AC,BD.
∵E,F是AB,AD的中点,即EF是的中位线.
,
同理:,,.
又等腰梯形ABCD中,.
.
四边形EFGH是菱形.
是的中位线,
∴EF EG,,
同理,NMEG,
∴EFNM,
四边形OPMN是平行四边形.
,,
又菱形EFGH中,,
平行四边形OPMN是矩形.
故选:D.
本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.
6、B
【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.
【详解】
∵四边形ABCD是平行四边形,
∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E 是OC中点,
∴BE⊥AC,
故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=AB=AG=BG,
∴EG=EF=AG=BG,无法证明GE=GF,
故③错误,
∵BG=EF,BG∥EF∥CD,
∴四边形BEFG是平行四边形,
故②正确,
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
故选B.
本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
7、A
【解析】
根据运算程序,前两次运算结果小于等于35,第三次运算结果大于35列出不等式组,然后求解即可.
【详解】
依题意,得:,
解得7<x≤1.
故选A.
本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.
8、B
【解析】
根据判别式的意义得到△=62-4c=0,然后解关于c的一次方程即可.
【详解】
∵方程x2+6x+c=0有两个相等的实数根,
∴△=62-4×1×c=0,
解得:c=9,
故选B.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
【详解】
解:由折线统计图得乙运动员的成绩波动较大,
所以.
故答案为:<
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
10、
【解析】
根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.
【详解】
解:∵由勾股定理得:AC2+BC2=AB2,
∴S2+S1=S3,
∵S1=5,S2=6,
∴S3=11,
∴AB=,
故答案为:.
本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.
11、15.
【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
【详解】
解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
故答案为:15
本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
12、144(1﹣x)2=1.
【解析】
设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.
【详解】
设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,
根据题意,得144(1﹣x)2=1.
故答案为144(1﹣x)2=1.
本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.
13、175°
【解析】
如图所示,∵∠ADC、∠BCD的平分线交于点O1,
∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
∵∠O1DC、∠O1CD的平分线交于点O2,
∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
又∵四边形ABCD中,∠DAB+∠ABC=200°,
∴∠ADC+∠DCB=160°,
∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
故答案为175°.
三、解答题(本大题共5个小题,共48分)
14、(1)今年5月份A款汽车每辆售价9万元;(2)共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;(3)当=0.5时,(2)中所有方案获利相同.
【解析】
(1)求单价,总价明显,应根据数量来列等量关系,等量关系为:今年的销售数量=去年的销售数量;
(2)关系式为:102≤A款汽车总价+B款汽车总价≤105;
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可.
【详解】
(1)设今年5月份A款汽车每辆售价m万元,则:
解得:m=9;
经检验,m=9是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价9万元;
(2)设购进A款汽车x辆,则:
102≤7.5x+6(15-x)≤105,
解得:
∵x的正整数解为8,9,10,
∴共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;
(3)设总获利为W元,购进A款汽车x辆,则:
W=(9-7.5)x+(8-6-)(15-x)=(-0.5)x+30-15,
当=0.5时,(2)中所有方案获利相同.
本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
15、(1)0;(2).
【解析】
(1)根据绝对值的意义、零指数幂的意义计算;
(2)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.
【详解】
(1)解:原式.
(2)解:原式.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、(1)90千米/时;(2)4小时;(3)15时.
【解析】
(1)根据路程除以时间等于速度,可得答案;
(2)根据路程不变,可得相应的自变量的范围;
(3)根据待定系数法,可得函数关系式,根据自变量与函数值得对应关系,可得答案.
【详解】
解:(1)(千米/时)
答:该团去五莲山旅游景点时的平均速度是90千米/时;
(2)由横坐标得出8时到达景点,12时离开景点,小时,
答:该团在五莲山旅游景点游玩了4小时. ;
(3)设该团返回途中函数关系式是,由题意,得
,
解得,
返回途中函数关系式是,
当时,,
答:该团返回到宾馆的时刻是15时.
本题考查的是函数图像,熟练掌握函数图像是解题的关键.
17、(1)y=x+5;(2)5;(1)7或1
【解析】
(1)利用待定系数法求一次函数的解析式;
(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;
(1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.
【详解】
解:(1)设这个一次函数的解析式是y=kx+b,
把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,
所以这个一次函数的解析式是:y=x+5;
(2)设直线AB交x轴于C,如图,
当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),
当n=2时,S△OPC=×5×2=5,
即直线AB,直线OP与x轴围成的图形的面积为5;
(1)∵当△OAP的面积等于△OAB的面积的2倍,
∴×5×|m|=2××1×5,
∴m=2或m=﹣2,
即P点的横坐标为2或﹣2,
当x=2时,y=x+5=7,此时P(2,7);
当x=﹣2时,y=x+5=1,此时P(﹣2,1);
综上所述,n的值为7或1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
18、另一个因式为,的值为
【解析】
设另一个因式为(x+n),得2x2-5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=-5,k=3n,继而求出n和k的值及另一个因式.
【详解】
解:设另一个因式为(x+n),得:2x2-5x-k=(2x-3)(x+n)
则2x2-5x-k=2x2+(2n-3)x-3n,
解得:
另一个因式为,的值为,
本题考查因式分解的应用,正确读懂例题,理解如何利用待定系数法求解是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (2b+a)(2b-a)
【解析】
运用平方差公式进行因式分解:a2-b2=(a+b)(a-b).
【详解】
(2b+a)(2b-a).
故答案为:(2b+a)(2b-a)
本题考核知识点:因式分解.解题关键点:熟记平方差公式.
20、
【解析】
延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得到ME=EC,根据中位线的性质可得DE=BM,再求出BM的长即可得到结论.
【详解】
解:延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,
∵DE平分△ABC的周长,CD=DB,
∴ME=EC,
∴DE=BM,
∵∠BAC=60°,
∴∠BAM=120°,
∵AM=AB,AN⊥BM,
∴∠BAN=60°,BN=MN,
∴∠ABN=30°,
∴AN=AB=1,∴BN=,
∴BM=2,
∴DE=,
故答案为:.
本题考查了三角形的中位线的性质,等腰三角形的性质,含30°的直角三角形的性质以及勾股定理等知识点,作出辅助线综合运用基本性质进行推理是解题的关键.
21、±8
【解析】
根据比例中项的定义即可求解.
【详解】
∵b是a,c的比例中项,若a=4,c=16,
∴b2=ac=4×16=64,
∴b=±8,
故答案为±8
此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
22、2
【解析】
连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.
【详解】
连接ME
根据MN垂直平分PE
可得为等腰三角形,即ME=PM
故答案为2.
本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.
23、;
【解析】
先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.
【详解】
去分母得:2x+1-x-2=m
解得:x=m+1
∵分式方程有增根
∴x=-2
∴m+1=-2
解得:m=-1
故答案为;-1.
本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.
二、解答题(本大题共3个小题,共30分)
24、(1),n=2;(2)3
【解析】
(1)根据待定系数法求解即可;
(2)联立方程组求出点P的坐标,可得点与点关于原点对称,从而可得,设直线的解析式为,,根据待定系数法求出k,b的值,即可求出直线与轴的交点为,从而求出.
【详解】
解:(1)将,两点坐标代入,求得,.
(2)联立方程组,消去得,解得,.
∴,,三点坐标为,,.
∴点与点关于原点对称.
∴.
设直线的解析式为,将,坐标代入得,
解得,.
∴直线与轴的交点为D.
∴.
∴.
本题考查了反比例函数的几何问题,掌握待定系数法、反比例函数的性质、一次函数的性质是解题的关键.
25、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,
∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形.
此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.
26、(1)证明见解析;(2)四边形ABEF为平行四边形,理由见解析.
【解析】
(1)利用AAS证明,再根据全等三角形的性质可得;
(2)首先根据全等三角形的性质可得,再根据内错角相等两直线平行可得到,又,可证出四边形为平行四边形.
【详解】
证明:,
,
,
,
即,
在与中
,
≌,
;
猜想:四边形ABEF为平行四边形,
理由如下:由知≌,
,
,
又,
四边形ABEF为平行四边形.
此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明.
题号
一
二
三
四
五
总分
得分
年龄/岁
13
14
15
16
人数
1
1
2
1
2025届福建省莆田市南门中学数学九上开学综合测试试题【含答案】: 这是一份2025届福建省莆田市南门中学数学九上开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2025届北京市一零一中学数学九上开学达标检测模拟试题【含答案】: 这是一份2025届北京市一零一中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年西安市东仪中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年西安市东仪中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。