开学活动
搜索
    上传资料 赚现金

    2025届宝鸡市金台中学九年级数学第一学期开学经典试题【含答案】

    2025届宝鸡市金台中学九年级数学第一学期开学经典试题【含答案】第1页
    2025届宝鸡市金台中学九年级数学第一学期开学经典试题【含答案】第2页
    2025届宝鸡市金台中学九年级数学第一学期开学经典试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届宝鸡市金台中学九年级数学第一学期开学经典试题【含答案】

    展开

    这是一份2025届宝鸡市金台中学九年级数学第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列图形中,是中心对称图形的是( )
    A.B.C.D.
    2、(4分)已知四边形,有下列四组条件:①,;②,;③,;④,.其中不能判定四边形为平行四边形的一组条件是( )
    A.①B.②C.③D.④
    3、(4分)班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )
    A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90
    4、(4分)如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.
    正确的有( )
    A.1个B.2个C.3个D.4个
    5、(4分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )
    A.5B.6C.8D.10
    6、(4分)在Rt△ABC中,∠C=90°,AC=4,AB=5,则csA的值是( )
    A.B.C.D.
    7、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,,垂足为E,,,.则AE的长为( )
    A.B.3C.D.
    8、(4分)下列各式能利用完全平方公式分解因式的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一组数据的平均数是则这组数据的方差为__________.
    10、(4分)如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度.

    11、(4分)在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.
    12、(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.
    13、(4分)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是______米/秒.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知的三边长分别为,求证:是直角三角形.
    15、(8分)市政某小组检修一条长的自来水管道,在检修了一半的长度后,提高了工作效率,每小时检修的管道长度是原计划的1.5倍,结果共用完成任务,求这个小组原计划每小时检修管道的长度.
    16、(8分)如图,在正方形内任取一点 ,连接,在⊿外分别以为边作正方形和.
    ⑴.按题意,在图中补全符合条件的图形;
    ⑵.连接,求证:⊿≌⊿;
    ⑶.在补全的图形中,求证:∥.
    17、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m-6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处
    (1)求线段OD的长
    (2)求点E的坐标
    (3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐
    18、(10分)如图,在平行四边形中,点、分别是、上的点,且,,求证:
    (1);
    (2)四边形是菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.
    20、(4分)数据2,0,1,9,0,6,1,6的中位数是______.
    21、(4分)某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是_____(用数学概念作答)
    22、(4分)如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).
    23、(4分)将2019个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,已知一次函数的图象与轴,轴分别交于点,.以为边在第一象限内作等腰,且,.过作轴于点.的垂直平分线交于点,交轴于点.
    (1)求点的坐标;
    (2)连接,判定四边形的形状,并说明理由;
    (3)在直线上有一点,使得,求点的坐标.
    25、(10分)某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.
    (1)若售价定为42元,每月可售出多少个?
    (2)若书包的月销售量为300个,则每个书包的定价为多少元?
    (3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?
    26、(12分)已知函数y=(2m+1)x+m﹣3;
    (1)若函数图象经过原点,求m的值;
    (2)若函数图象在y轴的截距为﹣2,求m的值;
    (3)若函数的图象平行直线y=3x﹣3,求m的值;
    (4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.
    2、D
    【解析】
    ①由有两组对边分别平行的四边形是平行四边形,可证得四边形ABCD是平行四边形;
    ②由有两组对边分别相等的四边形是平行四边形,可证得四边形ABCD是平行四边形;
    ③由一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,
    ④由已知可得四边形ABCD是平行四边形或等腰梯形.
    【详解】
    解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判定这个四边形是平行四边形;
    ②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判定这个四边形是平行四边形;
    ③根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知③能判定这个四边形是平行四边形;
    ④由一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;
    故给出的四组条件中,①②③能判定这个四边形是平行四边形,
    故选:D.
    此题考查了平行四边形的判定.注意熟记平行四边形的判定定理是解此题的关键.
    3、A
    【解析】
    如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.
    【详解】
    设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.
    故选A.
    本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.
    4、C
    【解析】
    ∵△BMN是由△BMC翻折得到的,
    ∴BN=BC,又点F为BC的中点,
    在Rt△BNF中,sin∠BNF=,
    ∴∠BNF=30°,∠FBN=60°,
    ∴∠ABN=90°-∠FBN=30°,故②正确;
    在Rt△BCM中,∠CBM=∠FBN=30°,
    ∴tan∠CBM=tan30°=,
    ∴BC=CM,AB2=3CM2故③正确;
    ∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,
    ∴△PMN是等边三角形,故④正确;
    由题给条件,证不出CM=DM,故①错误.
    故正确的有②③④,共3个.
    故选C.
    5、C
    【解析】
    根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.
    【详解】
    在△ABC中,AB=AC,AD是∠BAC的平分线,
    ADBC,BC=2BD.
    ∠ADB=90°
    在Rt△ABD中,根据勾股定理得:BD===4
    BC=2BD=2×4=8.
    故选C.
    本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.
    6、D
    【解析】
    根据余弦的定义计算即可.
    【详解】
    解:如图,
    在Rt△ABC中,,
    故选:D.
    本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.
    7、D
    【解析】
    由平行四边形的性质可知,对角线互相平分,则得到AO=3,BO=5,而AB=4,三边长满足勾股定理,则三角形AOB是直角三角形,∠BAC=90°,则三角形BAC也是直角三角形,再用等面积法求AE.
    【详解】
    ∵四边形ABCD是平行四边形

    又AB=4
    满足
    故三角形ABO是直角三角形,∠BAC=90°
    即三角形BAC也是直角三角形
    在三角形BAC中,

    而三角形的BAC面积=BA×AC×=BC×AE×
    则可得:4×6×=×AE×
    故AE=
    故选:D
    本题综合性考察了直角三角形三边的关系,解题关键在于熟悉常见的勾股数,例如(3,4,5)(6,8,10),(5,12,13),熟悉后能够更快的判断出直角三角形.题中涉及到求直角三角形斜边的高,可以用到等面积法灵活处理.
    8、B
    【解析】
    根据完全平方公式的特点逐一判断以上选项,即可得出答案.
    【详解】
    (1)不符合完全平方公式的特点,故本选项错误;(2)=,故本选项正确;(3)不符合完全平方公式的特点,故本选项错误;(4)不符合完全平方公式的特点,故本选项错误。因此答案选择B.
    本题考查的是利用完全平方公式进行因式分解,重点需要掌握完全平方公式的特点:首尾皆为平方的形式,中间则是积的两倍.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8
    【解析】
    根据平均数的公式计算出x后,再运用方差的公式即可解出本题.
    【详解】
    x=6×5−2−6−10−8=4,
    S=[(2−6) +(6−6) +(4−6) +(10−6) +(8−6) ]=×40=8,
    故答案为:8.
    此题考查算术平均数,方差,解题关键在于掌握运算法则
    10、
    【解析】
    利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.
    【详解】
    解:在矩形AEFG中,∠AEF=90°
    ∵∠AEB+∠AEF+∠CEF=180°,
    ∠CEF=15°
    ∴∠AEB=75°
    ∵∠BAE+∠B+∠AEB=180°
    ∠BAE=40°
    ∴∠B=65°
    ∵∠D=∠B
    ∴∠D=65°
    故答案为65°
    考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.
    11、2.5
    【解析】
    根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.
    【详解】
    解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,

    在△ABC中,AB=10,CA=8,BC=6,
    ∴,
    ∴△ABC是直角三角形,即AC⊥BC,
    ∵DI∥BC,
    ∴DE⊥AC,
    ∵∠BAC的平分线与∠BCA的平分线交于点I,
    ∴点I是三角形的内心,则,
    在△ABC中,根据等面积的方法,有
    ,设
    即,
    解得:,
    ∵DI∥BC,
    ∴,∠DIB=∠CBI=∠DBI,
    ∴DI=BD,
    ∴,
    解得:BD=2.5,
    ∴DI=2.5;
    故答案为:2.5.
    本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.
    12、50°
    【解析】
    根据全等三角形对应角相等可得∠ACB=∠DCE,然后根据∠ACB+∠BCD=∠DCE+∠BCD得出答案.
    【详解】
    解: ∵△ACB≌△DCE
    ∴∠ACB=∠DCE
    ∴∠ACB+∠BCD=∠DCE+∠BCD,
    ∴∠BCE=∠ACD=50°
    故答案为:50°.
    本题考查全等三角形的性质,题目比较简单.
    13、20
    【解析】
    试题分析:设甲车的速度是m米/秒,乙车的速度是n米/秒,根据题意及图形特征即可列方程组求解.
    设甲车的速度是m米/秒,乙车的速度是n米/秒,由题意得
    ,解得
    则甲车的速度是20米/秒.
    考点:实际问题的函数图象,二元一次方程组的应用
    点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.
    三、解答题(本大题共5个小题,共48分)
    14、见解析.
    【解析】
    根据勾股定理的逆定理解答即可.
    【详解】
    证明:

    以为三边的是直角三角形.
    本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
    15、这个小组原计划每小时检修管道长度为1 m.
    【解析】
    首先设这个小组原计划每小时检修管道长度为x m,然后根据题意可列出方程,解得即可.
    【详解】
    解:设这个小组原计划每小时检修管道长度为x m.
    由题意,得,
    解得x=1.
    经检验:x=1是原方程的解,且符合题意.
    答:这个小组原计划每小时检修管道长度为1 m.
    此题主要考查分式方程的实际应用,关键是找出关系式,即可解题.
    16、(1)补全图形见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    分析:⑴问要注意“在⊿外”作正方形;
    本题的⑵问根据正方形的性质得出的结论为三角形全等提供条件,比较简单;
    本题额⑶问可以连接正方形的对角线后,然后利用“内错角相等,两直线平行.”来证明.
    详解:⑴.如图1,在⊿外分别以为边作正方形和.(要注意是在“⊿外”作正方形,见图1)
    ⑵.在图1的基础上连接.
    ∵四边形 、和都是正方形




    ∴⊿≌⊿( )
    ⑶. 继续在图1的基础上连接.(见图2)
    ∵四边形是正方形,且已证



    ∵⊿≌⊿


    ∴ 即
    ∴∥.
    点睛:本题的⑴问要注意的是在“在⊿外”作正方形,所以不要作在三角形内部;本题的⑵问主要是利用正方形提供的条件来证明两个三角形全等,比较简单,常规证法;本题的⑶问巧妙利用与正方形的对角线构成的内错角来提供平行的条件,需正方形和全等三角形来综合提供.
    17、(1)OD=3;(2)E点(,)(3)点N为(,0)或(,0)
    【解析】
    (1)根据非负性即可求出OA,OC;根据勾股定理得出OD长;
    (2)由三角形面积求法可得,进而求出EG和DG,即可解答;
    (3)由待定系数法求出DE的解析式,进而求出M点坐标,再利用平行四边形的性质解答即可.
    【详解】
    解:(1)∵线段OA,OC的长分别是m,n且满足
    ∴OA=m=6,OC=n=8;
    设DE=x,由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8-OD=8-x,
    =10,
    可得:EC=10-AE=10-6=4,
    在Rt△DEC中,由勾股定理可得:DE2+EC2=DC2,
    即x2+42=(8-x)2,
    解得:x=3,
    可得:DE=OD=3,
    (2)过E作EG⊥OC,
    在Rt△DEC中,


    解得:EG=,
    在Rt△DEG中,,
    ∴OG=3+=,
    所以点E的坐标为(,),
    (3)
    设直线DE的解析式为:y=ax+c,把D(3,0),E(4.8,2.4)代入解析式可得:

    解得:,
    所以DE的解析式为:,
    把y=6代入DE的解析式,可得:x=,
    即AM=,
    当以M、A、N、C为顶点的四边形是平行四边形时,
    CN=AM=,
    所以ON=8+=,ON'=8-=,
    即存在点N,且点N的坐标为(,0)或(,0).
    本题是一次函数综合题目,考查了非负性、用待定系数法求一次函数的解析式、勾股定理、平行四边形的性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过求一次函数的解析式和平行四边形的性质才能得出结果.
    18、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;
    (2)由全等三角形的性质得出DA=DC,即可得出结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形
    ∴∠A=∠C,
    在△DAE和△DCF中,,
    ∴△DAE≌△DCF(ASA),
    ∴DE=DF;
    (2)由(1)可得△DAE≌△DCF
    ∴DA=DC,
    又∵四边形ABCD是平行四边形
    ∴四边形ABCD是菱形.
    本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    根据三角形中位线定理解答即可.
    【详解】
    ∵D,E分别为AC,BC的中点,
    ∴AB=2DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    20、1.2
    【解析】
    根据中位数的意义,将这组数据从小到大排序后,处在第4、2位置的两个数的平均数是中位数,即可解答.
    【详解】
    解:将这组数据从小到大排序后,处在第4、2位的两个数的平均数为(1+2)÷2=1.2,
    因此中位数是1.2.
    故答案为:1.2.
    此题考查中位数的意义,把一组数据从小到大排列后找出处在中间位置的一个数或两个数的平均数是解题关键.
    21、众数
    【解析】
    商场经理要了解哪些型号最畅销,所关心的即为众数.
    【详解】
    根据题意知:对商场经理来说,最有意义的是销售数量最多衬衫的数量,即众数.
    故答案为:众数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    22、3080π.
    【解析】
    用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.
    【详解】
    依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).
    答:剩余部分面积为3080πmm1.
    故答案为:3080π.
    本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.
    23、2
    【解析】
    根据题意可得:阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则2019个这样的正方形重叠部分即为(2019﹣1)个阴影部分的和,问题得解.
    【详解】
    由题意可得阴影部分面积等于正方形面积的,则一个阴影部分面积为:1.
    n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)×4=(n﹣1).
    所以这个2019个正方形重叠部分的面积和=×(2019﹣1)×4=2,
    故答案为:2.
    本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)四边形是矩形,理由详见解析;(3)点坐标为或.
    【解析】
    (1)根据一次函数解析式求出A,B坐标,证明△AOB≌△BDC(AAS),即可解决问题.
    (2)证明EG=CD.EG∥CD,推出四边形EGDC是平行四边形,再根据轴即可解决问题.
    (3)先求出,设M(1,m),构建方程即可解决问题.
    【详解】
    (1)当时,,∴.∴.
    当时,,∴.∴.
    ∵,∴.
    在和中,
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    (2)∵是的垂直平分线,
    ∴点坐标为,点坐标为,∴.
    ∵,,
    ∴四边形是平行四边形.
    ∵轴,
    ∴平行四边形是矩形.
    (3)在中,,
    ∴,
    ∴.
    设点的坐标为,则.
    过作于,则.
    .
    解得:或.
    所以点坐标为或.
    本题属于一次函数综合题,考查了等腰三角形的性质,矩形的性质,一次函数的性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    25、(1)580(个);(2)70(元);(3)为体现“薄利多销”的销售原则,我认为销售价格应定为50元.
    【解析】
    (1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;
    (2)根据“售价+月销量减少的个数÷10”进行解答;
    (3)设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.
    【详解】
    解:(1)当售价为42元时,每月可以售出的个数为600﹣10(42﹣40)=580(个);
    (2)当书包的月销售量为300个时,每个书包的价格为:40+(600﹣300)÷10=70(元);
    (3)设销售价格应定为x元,则
    (x﹣30)[600﹣10(x﹣40)]=10000,
    解得x1=50,x2=80,
    当x=50时,销售量为500个;当x=80时,销售量为200个,
    因此为体现“薄利多销”的销售原则,我认为销售价格应定为50元.
    本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.
    26、 (1)m=3;(2)m=1;(3)m=1;(4)m<﹣.
    【解析】
    (1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;
    (2)根据题意可得m﹣3=﹣2,解方程即可;
    (3)根据两函数图象平行,k值相等可得2m+1=3;
    (4)根据一次函数的性质可得2m+1<0,再解不等式即可.
    【详解】
    解:(1)∵函数图象经过原点,
    ∴m﹣3=0,且2m+1≠0,
    解得:m=3;
    (2)∵函数图象在y轴的截距为﹣2,
    ∴m﹣3=﹣2,且2m+1≠0,
    解得:m=1;
    (3)∵函数的图象平行直线y=3x﹣3,
    ∴2m+1=3,
    解得:m=1;
    (4)∵y随着x的增大而减小,
    ∴2m+1<0,
    解得:m<﹣.
    此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
    题号





    总分
    得分
    批阅人
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8

    相关试卷

    2024年陕西省宝鸡市金台区金河中学九年级数学第一学期开学质量跟踪监视试题【含答案】:

    这是一份2024年陕西省宝鸡市金台区金河中学九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省宝鸡市金台区宝鸡市第一中学2023-2024学年九年级下学期开学考试数学试题:

    这是一份陕西省宝鸡市金台区宝鸡市第一中学2023-2024学年九年级下学期开学考试数学试题,共29页。

    278,陕西省宝鸡市金台区宝鸡市第一中学2023-2024学年九年级下学期开学考试数学试题():

    这是一份278,陕西省宝鸡市金台区宝鸡市第一中学2023-2024学年九年级下学期开学考试数学试题(),共7页。试卷主要包含了计算的结果是,如图,平行四边形中,等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map