2025届安徽省合肥一六八中学数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )
A.m<1B.m>1C.m<2D.m>0
2、(4分)如图,一个四边形花坛ABCD,被两条线段MN, EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1、S2、S3、S4,若MN∥AB∥DC,EF∥DA∥CB,则有( )
A.S1= S4B.S1 + S4 = S2 + S3C.S1 + S3 = S2 + S4D.S1·S4 = S2·S3
3、(4分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是( )
A.x2-3x+2=0B.x2+3x+2=0C.x2+3x-2=0D.x2-2x+3=0
4、(4分)中国药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项,已知显微镜下某种疟原虫平均长度为0.0000015米,该长度用科学记数法可表示为( )
A.米B.米C.米D.米
5、(4分)如图,已知的顶点A、C分别在直线和上,O是坐标原点,则对角线OB长的最小值为( )
A.4B.5C.6D.7
6、(4分)不等式的解集为( )
A.B.C.D.
7、(4分)若,则下列不等式成立的是( )
A.B.C.D.
8、(4分)下列运算中正确的是( )
A.+=B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若因式分解:__________.
10、(4分)一组数据从小到大排列:0、3、、5,中位数是4,则________.
11、(4分)王明在计算一道方差题时写下了如下算式:,则其中的____________.
12、(4分)点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).
13、(4分)某学校将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同,若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了_____本.
.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数过点(-2,5),和直线,分别在下列条件下求这个一次函数的解析式.
(1)它的图象与直线平行;
(2)它的图象与y轴的交点和直线与y轴的交点关于轴对称.
15、(8分)计算:
.
16、(8分)如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.
17、(10分)小红同学根据学习函数的经验,对新函数的图象和性质进行了如下探究,请帮她把探究过程补充完整.
第一步:通过列表、描点、连线作出了函数的图象
第二步:在同一直角坐标系中作出函数的图象
(1)观察发现:函数的图象与反比例函数的图象都是双曲线,并且形状也相同,只是位置发生了改变.小红还发现,这两个函数图像既是中心对称图形,又是轴对称图形,请你直接写出函数的对称中心的坐标.
(2)能力提升:函数的图象可由反比例函数的图象平移得到,请你根据学习函数平移的方法,写出函数的图象可由反比例函数的图象经过怎样平移得到?
(3)应用:在所给的平面直角坐标系中画出函数的图像,若点,在函数的图像上,且时,直接写出、的大小关系.
18、(10分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.
求证:四边形ECCD是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,在梯形中,,,,,那么下底的长为__________.
20、(4分)直线上有一点则点关于原点的对称点为________________(不含字母).
21、(4分)在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________
22、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
23、(4分)扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知点分别在菱形的边上滑动(点不与重合),且.
(1)如图1,若,求证:;
(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;
(3)如图3,若,请直接写出四边形的面积.
25、(10分)如图,在△ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM.
(1)求证: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的长.
26、(12分)已知三个实数x,y,z满足,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
据正比例函数的增减性可得出(m-1)的范围,继而可得出m的取值范围.
【详解】
解:根据题意,知:y随x的增大而减小,则m﹣1<0,即m<1.
故选:A.
能够根据两点坐标之间的大小关系,判断变化规律,再进一步根据正比例函数图象的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.列不等式求解集.
2、D
【解析】
由于在四边形中,MN∥AB∥DC,EF∥DA∥CB,因此MN、EF把一个平行四边形分割成四个小平行四边形.可设MN到DC的距离为h1,MN到AB的距离为h2,根据AB=CD,DE=AF,EC=FB及平行四边形的面积公式即可得出答案.
【详解】
解:∵MN∥AB∥DC,EF∥DA∥CB,
∴四边形ABCD,四边形ADEF,四边形BCEF,红、紫、黄、白四边形都为平行四边形,
∴AB=CD,DE=AF,EC=BF.
设MN到DC的距离为h1,MN到AB的距离为h2,
则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,
因为DE,h1,FB,h2的关系不确定,所以S1与S4的关系无法确定,故A错误;
S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;
S1+S3=CD•h1,S2+S4=AB•h2,又AB=CD,而h1不一定与h2相等,故C错误;
S1·S4=DE•h1•FB•h2=AF•h1•FB•h2,S2·S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1·S4=S2·S3,
故D正确;
故选:D.
本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
3、A
【解析】
先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=1.
【详解】
解:∵x1=1,x2=2,
∴x1+x2=3,x1x2=2,
∴以x1,x2为根的一元二次方程可为x2-3x+2=1.
故选A.
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=−,x1x2=.
4、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000015=1.5×10-6,
故选:A.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
5、B
【解析】
当B在x轴上时,对角线OB长度最小,由题意得出∠ADO=∠CED=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.
【详解】
当B在x轴上时,对角线OB长度最小,如图所示:
直线x=1与x轴交于点D,直线x=4与x轴交于点E,
根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,
四边形ABCD是平行四边形,
∴OA∥BC,OA=BC,
∴∠AOD=∠CBE,
在△AOD和△CBE中,
,
∴△AOD≌△CBE(AAS),
∴OD=BE=1,
∴OB=OE+BE=5,
故答案为:5.
本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
6、B
【解析】
先去括号,再移项,然后合并同类项,最后系数化为1,即可得出答案.
【详解】
解:
6x+15>8x+6
6x-8x>6-15
-2x>-9
x<4.5
因此答案选择B.
本题主要考查了一元一次不等式的解法:去分母,去括号,移项,合并同类项,系数化为1.
7、B
【解析】
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
【详解】
A: a>b,则a-5>b-5,故A错误;
B:a>b, -a<-b,则-2a<-2b, B选项正确.
C:a>b, a+3>b+3,则>,则C选项错误.
D:若0>a>b时,a2<b2,则D选项错误.
故选B
本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
8、D
【解析】
根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.
【详解】
A. +=2+3=5,故A选项错误;
B. =2,故B选项错误;
C. ,故C选项错误;
D. ,正确,
故选D.
本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
应用提取公因式法,公因式x,再运用平方差公式,即可得解.
【详解】
解:
此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.
10、5
【解析】
根据中位数的求法可以列出方程,解得x=5
【详解】
解:∵一共有4个数据
∴中位数应该是排列后第2和第3个数据的平均数
∴可得:
解得:x=5
故答案为5
此题考查中位数,熟练掌握中位数的求法是解题关键
11、1.865
【解析】
先计算出4个数据的平均数,再计算出方差即可.
【详解】
∵,
∴
=
=
=
=
=1.865.
故答案为:1.865.
此题主要考查了方差的计算,求出平均数是解决此题的关键.
12、y1>y2
【解析】
∵在中,,
∴在函数中,y随x的增大而减小.
又∵,
∴,即空格处应填“>”.
13、
【解析】
设乙种书籍的单价为每本元,A购买了本,B购买了本,然后分别表示甲的单价,A,B的单价,列方程组利用两方程相减求解即可.
【详解】
解:设乙种书籍的单价为每本元,则甲种书籍的单价为元,A种书籍的单价为每本元,B种书籍的单价为元,设A购买了本,B购买了本,则甲购买了本,乙购买了本,所以:
②-①得:
所以:,所以:.
所以:乙比甲多买了本.
故答案为:.
本题考查的是方程组的应用,利用加减法消元找到整体的值是解题关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
(1)与直线平行,则k=,再将(-2,5)代入求出b;(2)一次函数与y轴的交点为(0,b),它与直线与y轴的交点(0,3)关于x轴对称,则b=-3,再将(-2,5)代入求出k.
【详解】
解:(1)由一次函数与直线平行,则k=,
将(-2,5)代入y=b,得5=×(-2)+b,解得b=2,
则一次函数解析式为y=x+2;
(2)一次函数与y轴的交点为(0,b),直线与y轴的交点坐标为(0,3),
又(0,b)与(0,3)关于x轴对称,
则b=-3,
将(-2,5)代入y=kx-3,得5=-2k-3,解得k=-4,
则一次函数解析式为y=-4x-3.
15、;
【解析】
(1)根据二次根式乘除法和减法可以解答本题;
(2)先利用平方差公式和完全平方公式计算,然后合并即可.
【详解】
原式
;
原式
.
16、(1)见解析;(2)70°.
【解析】
(1)结合中位线的性质证明即可;(2)先根据平行四边形的性质得到∠DEF=∠BAC,再根据题意证明∠DHF=∠BAC,得到∠DEF=∠DHF,计算∠DHF大小即可.
【详解】
(1)∵D,E,F分别是边AB、BC、CA的中点,
∴DE,EF是△ABC的中位线,
∴DE∥AF,EF∥AD,
∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,
∴∠DEF=∠BAC,
∵D,F分别是AB,CA的中点,AH是边BC上的高,
∴DH=AD,FH=AF,
∴∠DAH=∠DHA,∠FAH=∠FHA,
∵∠DAH+∠FAH=∠BAC,
∠DHA+∠FHA=∠DHF,
∴∠DHF=∠BAC,
∴∠DEF=∠DHF=∠AHF+∠AHD=70°.
本题主要考查中位线的性质和平行四边形的判定与性质,掌握中位线的性质,证明∠DEF=∠DHF是解答本题的关键.
17、(1)观察发现:;(2)能力提升:函数的图象可由反比例函数的图象向左平移2个单位平移得到;(3)应用:见解析,.
【解析】
(1)根据函数的图象,可得出结论;(2)根据平移的规律即可求解;(3)根据函数图象即可求得.
【详解】
解:(1)
(2)函数的图象可由反比例函数的图象向左平移2个单位平移得到.
(3)画图如图
本题考查了函数的图象与性质,解题的关键是理解题意,灵活运用所学知识解决问题.
18、见解析
【解析】
首先利用中位线定理证得CG∥BD,CG=BD,然后根据四边形ABCD是菱形得到AC⊥BD,DE=BD,从而得到∠DEC=90°,CG=DE,即可得到四边形ECGD是矩形.
【详解】
证明:∵CF=BC,
∴C点是BF中点,
∵点G是DF中点,
∴CG是△DBF中位线,
∴CG∥BD,CG=BD,
∵四边形ABCD是菱形,
∴AC⊥BD,DE=BD,
∴∠DEC=90°,CG=DE,
∴四边形ECGD是矩形.
本题考查了矩形的判定、菱形的性质及三角形的中位线定理,解题的关键是牢记矩形的判定方法,难度不大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、11
【解析】
首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.
【详解】
解:如图,过A作AE∥DC交BC与E,
∵AD∥BC,
∴四边形AECD是平行四边形,
∴AD=EC=5,AE=CD,
∵AB=CD=6,
∴AE=AB=6,
∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=6,
∴BC=6+5=11,
故答案为11.
此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.
20、(-1,-3).
【解析】
根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.
【详解】
解:∵直线y=x+2上有一点P(1,m),
∴x=1,y=1+2=3,
∴P(1,3),
∴P点关于原点的对称点P′的坐标为:(-1,-3).
故答案为:(-1,-3).
此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.
21、或或
【解析】
分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.
【详解】
解:I.当时,如图1所示.
,,
,
为等边三角形,
;
II.当时,如图2所示.
在中,,,
,.
在中,,
,
或.
故答案为12或或.
本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.
22、14或16.
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)若4为腰长,6为底边长,
由于6−4<4<6+4,即符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+4+4=14.
(2)若6为腰长,4为底边长,
由于6−6<4<6+6,即符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+6+4=16.
故等腰三角形的周长为:14或16.
故答案为:14或16.
此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论
23、
【解析】
解:共3个科目,数学科目是其中之一,故抽到数学科目的概率为
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.
【解析】
(1)根据菱形的性质及已知,得到,再证,
根据三角形全等的性质即可得到结论;
(2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;
(3)根据菱形的面积公式,结合(2)的结论解答.
【详解】
解:(1)∵四边形是菱形,
∴,.
∵,∴,
∴.
∵,∴,∴.
在和中,,
∴,
∴.
(2)若与不垂直,(1)中的结论还成立证明如下:
如图,作,垂足分别为点.
由(1)可得,
∴,
在和中,,
∴,∴.
(3)如图,连接交于点.
∵,∴为等边三角形,
∵,∴,同理,,
∴四边形的面积四边形的面积,
由(2)得四边形的面积四边形AECF的面积
∵,
∴,,
∴四边形的面积为,
∴四边形的面积为.
本题主要考查全等三角形的性质和判定,菱形的性质的应用.主要考查学生的推理能力,证明三角形全等是解题的关键.
25、(1)见解析 (2)AC=1
【解析】
(1)证△BAD≌△EAD,推出AB=AE,BD=DE,根据三角形的中位线性质得出DM=CE即可;
(2)根据勾股定理求出AB,求出AE,根据三角形的中位线求出CE,即可得出答案.
【详解】
∵AD⊥BE,
∴∠ADB=∠ADE=90°,
∵AD为∠BAC的平分线,
∴∠BAD=∠EAD,
在△BAD和△EAD中,
,
∴△BAD≌△EAD(SAS),
∴AB=AE,BD=DE,
∵M为BC的中点,
∴DM=CE
(2)∵在Rt△ADB中,∠ADB=90°,AD=6,BD=8,
∴由勾股定理得:AE=AB=,
∵DM=2,DM=CE,
∴CE=4,
∴AC=10+4=1.
本题考查了全等三角形的性质和判定,三角形的中位线,勾股定理的应用,解此题的关键是推出△BAD≌△EAD,题目比较好,难度适中.
26、4
【解析】
求得到,然后求出,分子分母同除以xyz得,即可求解。
【详解】
解:∵
∴
∴
分子分母同除以xyz得=4
本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。
题号
一
二
三
四
五
总分
得分
批阅人
…
-6
-5
-4
-3
-1
0
1
2
…
…
-1.5
-2
-3
-6
6
3
2
1.5
…
2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】: 这是一份2025届安徽省合肥市庐阳区45中学数学九上开学达标检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省合肥市42中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届安徽省合肥市42中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省合肥二十一中学数学九上开学综合测试试题【含答案】: 这是一份2024年安徽省合肥二十一中学数学九上开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。