2025届安徽省合肥市瑶海区九级九年级数学第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是( )
A.②③B.②③④C.③④D.①②③④
2、(4分)分式方程-1=的解为( )
A.x=1 B.x=-1 C.无解 D.x=-2
3、(4分)下面哪个点在函数y=2x-1的图象上( )
A.(-2.5,-4)B.(1,3)C.(2.5,4)D.(0,1)
4、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.D.
5、(4分)如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=( )
A.1.5B.3C.4D.5
6、(4分)如果分式有意义,那么x的取值范围是( )
A.x≠0B.x≤﹣3C.x≥﹣3D.x≠﹣3
7、(4分)计算( )
A.7B.-5C.5D.-7
8、(4分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
10、(4分)若恒成立,则A+B=____.
11、(4分)若分式的值为零,则x的值为_____.
12、(4分)当x=________时,分式的值为0
13、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,∠ACB=Rt∠,AB=,BC=,求斜边AB上的高CD.
15、(8分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.
(1)求△PEF的边长;
(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;
(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.
16、(8分)(1)解不等式组:
(2)解分式方程:.
17、(10分)下表给出三种上宽带网的收费方式.
设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;
填空:当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
18、(10分)如图,在的方格纸中,每一个小正方形的边长均为,点在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹.
在图1中,以为边画一个正方形;
在图2中,以为边画一个面积为的矩形(可以不在格点上).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.
20、(4分)观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.
21、(4分)如图,A、B的坐标分别为(1,0)、(0,2),若线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a-b的值为__.
22、(4分)若直线经过点和,且,是整数,则___.
23、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4, 1),B(-1,3),C(-1,1)
(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4,-5),画出△;
(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;
(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;
25、(10分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
26、(12分)如图,已知直线y=x+2交x轴于点A,交y轴于点B,
(1)求A,B两点的坐标;
(2)已知点C是线段AB上的一点,当S△AOC= S△AOB时,求直线OC的解析式。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分析:求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.
详解:∵∠AFC=135°,CF与AH不垂直,
∴点F不是AH的中点,即AF≠FH, ∴①错误;
∵四边形ABCD是矩形,
∴∠BAD=90°, ∵AD=,AB=1, ∴tan∠ADB= ,
∴∠ADB=30°, ∴∠ABO=60°,
∵四边形ABCD是矩形,
,,,,∴AO=BO,
∴△ABO是等边三角形,
∴AB=BO,,
∵AF平分∠BAD,
,
,
,
,
,
,
,∴②正确;
,,
,
,
,
,
,
,
,
∴③正确;
∵△AOB是等边三角形,
,
∵四边形ABCD是矩形,
,OB=OD,AB=CD,
∴DC=OC=OD,
,
,
即BE=3ED, ∴④正确;
即正确的有3个,
故选C.
点睛:本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.
2、C
【解析】
解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3,解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程无解.故选C.
点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
3、C
【解析】
将点的坐标逐个代入函数解析式中,若等号两边相等则点在函数上,否则就不在.
【详解】
解:将x=-2.5,y=-4代入函数解析式中,等号左边-4,等号右边-6,故选项A错误;
将x=1,y=3代入函数解析式中,等号左边3,等号右边1,故选项B错误;
将x=2.5,y=4代入函数解析式中,等号左边4,等号右边4,故选项C正确;
将x=0,y=1代入函数解析式中,等号左边1,等号右边-1,故选项D错误;
故选:C.
本题考查了一次函数图像上点的坐标特征,一次函数y=kx+b,(k≠0,且k,b为常数)的图像是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.
4、D
【解析】
分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.
详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM= AC=5 ,tan∠BAC=,可得EM= ;在Rt△AME中,由勾股定理求得AE= =1.2.
故选:B.
点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.
5、A
【解析】
根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.
【详解】
由旋转可得,△ABC≌△EDC,
∴DE=AB=1.5,
故选A.
本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.
6、D
【解析】
根据分式有意义的条件可得x+3≠0,再解即可.
【详解】
由题意得:x+3≠0,
解得:x≠3,
故选D.
7、C
【解析】
利用最简二次根式的运算即可得.
【详解】
故答案为 C
本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.
8、C
【解析】
由实际问题抽象出方程(行程问题).
【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x1<x1
【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
【详解】
∵y=(-1-a1)x+1,k=-1-a1<0,
∴y随着x的增大而减小,
∵1>-1,
∴x1<x1.
故答案为:x1<x1
本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
10、2.
【解析】
根据异分母分式加减法法则将进行变形,继而由原等式恒成立得到关于A、B的方程组,解方程组即可得.
【详解】
,
又∵
∴,
解得,
∴A+B=2,
故答案为:2.
本题考查了分式的加减法,恒等式的性质,解二元一次方程组,得到关于A、B的方程组是解题的关键.
11、1
【解析】
由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.
【详解】
解:,
则x﹣1=0,x+1≠0,
解得x=1.
故若分式的值为零,则x的值为1.
故答案为:1.
本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.
12、1
【解析】
根据分式值为0的条件直接求解即可.
【详解】
解:令且
∴
即时,分式的值为0.
故答案为:1.
本题考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.
13、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、CD=
【解析】
先根据勾股定理求出AC,再根据等面积法即可求得结果.
【详解】
解:由题意得,
,
,
解得CD=
本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.
15、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
【解析】
(1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;
(2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;
(3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
【详解】
解:(1)过P作PQ⊥BC于Q(如图1),
∵四边形ABCD是矩形, ∴∠B=90°,即AB⊥BC,
又∵AD∥BC, ∴PQ=AB=, ∵△PEF是等边三角形, ∴∠PFQ=60°,
在Rt△PQF中,∠FPQ=30°, 设PF=2x,QF=x,PQ=,根据勾股定理得:,
解得:x=1,故PF=2,
∴△PEF的边长为2;
(2)PH﹣BE=1,理由如下:
∵在Rt△ABC中,AB=,BC=3, ∴由勾股定理得AC=2,
∴CD=AC, ∴∠CAD=30° ∵AD∥BC,∠PFE=60°, ∴∠FPD=60°, ∴∠PHA=30°=∠CAD,
∴PA=PH, ∴△APH是等腰三角形, 作ER⊥AD于R(如图2) Rt△PER中,∠RPE=60°, ∴PR=PE=1,
∴PH﹣BE=PA﹣BE=PR=1.
(3)结论不成立,
当1<CF<2时,PH=1﹣BE, 当2<CF<3时,PH=BE﹣1.
本题考查相似形综合题.
16、(1)-2≤x<1;(2)x=-1.
【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:(1) ,
由①得:x<1,
由②得:x≥-2,
则不等式组的解集为-2≤x<1;
(2)去分母得:x2+x=x2-1-2,
解得:x=-1,
经检验x=-1是分式方程的解.
故答案为:(1)-2≤x<1;(2)x=-1.
本题考查解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解题的关键,解分式方程注意要检验.
17、;;;不超过; 超过而不超过; 超过.
【解析】
(1)根据表格写出函数的解析式,注意分段表示函数的解析式.
(2)根据函数的解析数求解 的交点,进而可得最省钱的取值范围.
【详解】
解:
根据一次函数y=3x-65与y=40的交点即可得到A最省钱的时间;
解得
所以当不超过时,选择方式最省钱
同理可得计算出直线y=3x-140与y=100的交点即可得到最省钱
解得
所以当超过而不超过,选择方式B最省钱
根据前面两问可得当超过.选择方式C最省钱
本题主要考查一次函数的应用问题,关键在于求解最省钱的取值范围,着重在于求解交点坐标.
18、(1)详情见解析;(2)详情见解析
【解析】
(1)观察图中AB,可知AB为以三个方格组成的矩形的对角线,据此根据方格的特点结合矩形的性质及正方形的判定定理进一步画出图形即可;
(2)首先根据题意按照(1)中作法画出正方形ABEF,结合题意可知其面积为10,据此,我们只要利用矩形对角线互相平分且相等的性质找到AF与BC的中点,然后连接起来即可得出答案.
【详解】
(1)如图1中,正方形ABCD即为所求:
(2)如图2中,矩形ABCD即为所求:
本题主要考查了根据矩形及正方形性质进行按要求作图,熟练掌握相关概念是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.
【详解】
如图,将绕着点逆时针旋转,得到,连接,,
,,,,,
是等边三角形
当点,点,点,点共线时,有最小值
,
故答案为:.
本题考查三点共线问题,正确画出辅助线是解题关键.
20、
【解析】
观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是
【详解】
由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是
故答案为:
本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.
21、1.
【解析】
利用平移变换的性质即可解决问题;
【详解】
观察图象可知,线段AB向左平移1个单位,再向上平移1个单位得到线段A1B1,
∴a=1,b=1,
∴a-b=1,
故答案为:1.
本题考查坐标与图形的变化-平移,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
22、1.
【解析】
把和代入,列方程组得到,由于,于是得到,即可得到结论.
【详解】
依题意得:,
∴k=n﹣3,
∵0<k<2,
∴0<n﹣3<2,
∴3<n<5,
∵n是整数,则n=1
故答案为1.
本题考查了一次函数的图象与系数的关系,用含n的代数式表示出k是解答本题的关键.注重考察学生思维的严谨性,易错题,难度中等.
23、1
【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
【详解】
当OB=1cm时,四边形ABCD是平行四边形,
∵BD=16cm,OB=1cm,
∴BO=DO,
又∵AO=OC,
∴四边形ABCD是平行四边形,
故答案为1.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)(-1,-2)(3)P(-,0).
【解析】
(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;
(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;
(3)作出点A关于x轴的对称点A’,再连接A’B,与x轴的交点即为P点.
【详解】
(1)如图所示,△,△即为所求;
(2)如图所示,点Q即为所求,坐标为(-1,-2)
(3)如图所示,P即为所求,
设A’B的解析式为y=kx+b,
将A’(-4,-1),B(-1,3)代入得
解得
∴A’B的解析式为y=x+,
当y=0,时,x+=0,解得x=-
∴P(-,0).
此题主要考查作图-旋转变换与平移变换,解题的关键是熟知旋转变换与平移变换的定义与性质,据此找到变换后的对应点.
25、12
【解析】
在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
【详解】
解:∵在Rt△ABC中,∠C=90°,
∴
∴
∴
又∵AC=5,AB=13,
∴
=
=12
此题主要考查勾股定理的运用.
26、(1)点A的坐标为(-4,0),点B的坐标为(0,2);(2)y=-x
【解析】
(1)分别令y=0, x=0, 代入一次函数式,即可求出A、B点的坐标;
(2)先由OA和OB的长求出△AOB的面积,设C点坐标为(m,n),△AOC和△AOB等底不同高, 由 S△AOC= S△AOB 列式,求出C点的纵坐标n,把n代入一次函数式求出m, 从而得出C点坐标, 设直线OC的解析式为y=kx ,根据C点坐标用待定系数法求出k, 即可确定直线OC的函数解析式.
【详解】
(1)解:∵直线y= x+2,
∴当x=0时,y=2,当y=0时,x=-4
∵直线y= x+2交x轴于点A,交y轴于点B,
∴点A的坐标为(-4,0),点B的坐标为(0,2)
(2)解:由(1)知,点A的坐标为(-4,0),点B的坐标为(0,2),
∴OA=4,OB=2,
∴S△AOB= =4
S△AOC= S△AOB ,
∴S△AOC=2
设点C的坐标为(m,n)
∴ =2,得n=1,
∵点C在线段AB上,
∴1= m+2,得m=-2
∴点C的坐标为(-2,1)
设直线OC的解析式为y=kx
-2k=1,得k=- ,
即直线OC的函数解析式为y=-x
此题主要考查一次函数的应用,解题的关键是熟知一次函数的图像与性质及三角形的面积公式.
题号
一
二
三
四
五
总分
得分
批阅人
收费方式
月使用费/元
包时上网时间/
超时费/(元/)
不限时
2025届安徽省合肥市巢湖市数学九年级第一学期开学检测试题【含答案】: 这是一份2025届安徽省合肥市巢湖市数学九年级第一学期开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省合肥市42中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届安徽省合肥市42中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。