2025届安徽省合肥市巢湖市数学九年级第一学期开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面各组数是三角形三边长,其中为直角三角形的是 ( )
A.8,12,15B.5,6,8C.8,15,17D.10,15,20
2、(4分)式子有意义,则x的取值范围是( )
A.x>1B.x<1C.x≥1D.x≤1
3、(4分)甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差,,则射击成绩较稳定的是( )
A.甲B.乙C.一样D.不能确定
4、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
5、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC的长为( )
A.9B.10C.11D.12
6、(4分)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )
A.y=4n﹣4B.y=4nC.y=4n+4D.y=n2
7、(4分)用三种正多边形铺设地板,其中两种是正方形和正五边形,则第三种正多边形的边数是( )
A.12B.15C.18D.20
8、(4分)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).
10、(4分)如图,□OABC的顶点O,A的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为___.
11、(4分)根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a时,输出数值为_____.
12、(4分)如图,平分,,,则______.
13、(4分)函数的定义域是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.
如图,在四边形中,,四边形就是“对角线垂直四边形”.
(1)下列四边形,一定是“对角线垂直四边形”的是_________.
①平行四边形 ②矩形 ③菱形 ④正方形
(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.
15、(8分)如图,点在同一直线上,,,.求证:.
16、(8分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为58°,求乙建筑物的高度.(参考数据:,,,.结果取整数)
17、(10分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题.
(1)该班共有 名学生;
(2)在图(1)中,将表示“步行”的部分补充完整;
(3)扇形图中表示骑车部分所占扇形的圆心角是 .
(4)如果小明所在年级共计800人,请你根据样本数据,估计一下该年级步行上学的学生人数是多少?
18、(10分)某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则关于x的不等式ax+b≤kx<1的解集为______.
20、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
21、(4分)已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.
22、(4分)已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.
23、(4分)函数的自变量x的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40
(1)这组数据的平均数为 ,中位数为 ,众数为 .
(2)用哪个值作为他们年龄的代表值较好?
25、(10分)某楼盘要对外销售该楼盘共23层,销售价格如下:第八层楼房售价为4000元米,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,
请写出售价元米与楼层x取整数之间的函数关系式.
已知该楼盘每套楼房面积均为100米,若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价,另外每套楼房总价再减a元;
方案二:降价.
老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
26、(12分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:A.82+122≠152,故不是直角三角形,错误;
B.52+62≠82,故不是直角三角形,错误;
C.82+152=172,故是直角三角形,正确;
D.102+152≠202,故不是直角三角形,错误.
故选C.
考点:勾股定理的逆定理.
2、C
【解析】
试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确
考点:二次根式有意义的条件
3、B
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵两人命中环数的平均数都是7,方差S甲2=3,S乙2=1.8,
∴S甲2>S乙2,
∴射击成绩较稳定的是乙;
故选:B.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、B
【解析】
因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
【详解】
解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
故选B.
点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
5、C
【解析】
分析:先证明AB=AF=7,DC=DE,再根据EF=AF+DE﹣AD求出AD,即可得出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=7,BC=AD,AD∥BC.
∵BF平分∠ABC交AD于F,CE平分∠BCD交AD于E,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=7,DC=DE=7,∴EF=AF+DE﹣AD=7+7﹣AD=3,∴AD=1,∴BC=1.
故选C.
点睛:本题考查了平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.
6、B
【解析】
试题解析:由题图可知:
n=1时,圆点有4个,即y=4×1=4;
n=2时,圆点有8个,即y=4×2=8;
n=3时,圆点有12个,即y=4×3=12;
……
∴y=4n.
故选B.
7、D
【解析】
根据正方形和正五边形的内角度数以及拼成一个圆周角,求出正多边的一个内角,从而判断正多边形的边数.
【详解】
正方形和正五边形的内角分别为和
所以可得正多边形的内角为
所以可得
可得
故选D.
本题主要考查正多边形的内角和,关键在于他们所围成的圆周角为 .
8、D
【解析】
解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(-3,0),则OB′=3
过点A作AE垂直x轴,则AE=4,OE=1
则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,
∵C′O∥AE,
∴∠B′C′O=∠B′AE,
∴∠B′C′O=∠EB′A
∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、AD=BC.
【解析】
直接利用平行四边形的判定方法直接得出答案.
【详解】
当AD∥BC,AD=BC时,四边形ABCD为平行四边形.
故答案是AD=BC(答案不唯一).
10、y=2x﹣1.
【解析】
将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.
【详解】
解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,
平行四边形OABC的对称中心D(4,1),
设直线MD的解析式为y=kx+b,
∴
即,
∴该直线的函数表达式为y=2x﹣1,
因此,本题正确答案是: y=2x﹣1.
本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.
11、8 .
【解析】
观察图形我们可以得出x和y的关系式为:是x≥1时关系式为y=x+5,当x<1是y=−x+5,然后将x=-2代入y=−x+5,求出y值即a值,再把a值代入关系式即可求出结果.
【详解】
当x=-2时,
∵x=−2<1,
∴y=a=−x+5=6;
当x=6时,.
∵x=6≥1,
∴y=x+5=8.
故答案为:8.
本题考查了代数式求值,掌握该求值方法是解答本题的关键.
12、50
【解析】
由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.
【详解】
解:∵,
∴∠ADE=180°-80°=100°,
∵平分,
∴∠BDE=∠ADE=50°,
∵,
∴∠ABD=∠BDE=50°.
故答案为:50.
本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.
13、
【解析】
根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
【详解】
根据题意得:x-1≥0,
解得:x≥1.
故答案为:.
此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
三、解答题(本大题共5个小题,共48分)
14、(1) ③④;(2)详见解析
【解析】
(1)根据“对角线垂直四边形"的定义求解;
(2)根据三角形中位线的性质得到HG//EF,HE//GF,则可判断四边形EFGH是平行四边形,再证明∠EHG=90°,然后判断四边形EFGH是矩形;
【详解】
(1) 菱形和正方形是“对角线垂直四边形,故③④满足题意.
(2)证明:∵点分别是边、、、的中点,
∴,且;,且;.
∴.
∴四边形是平行四边形.
∵,
∴,
又∵,
∴.
∴.
∴是矩形.
本题考查了中点四边形:任意四边形各边中点的连线所组成的四边形为平行四边形,也考查了三角形中位线性质、菱形、正方形的性质.
15、详见解析
【解析】
先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.
【详解】
解:证明:,
∴△ABC和△DEF都是直角三角形,
,
即,
在Rt△ABC和Rt△DFE中,
,
∴Rt△ABC≌Rt△DFE(HL),
∴.
本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.
16、38m.
【解析】
作AE⊥CD交CD的延长线于点E,根据正切的定义分别求出CE、DE,结合图形计算即可.
【详解】
如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形,
∴AE=BC=78m,
在Rt△ACE中,tan∠CAE=,
∴CE=AE⋅tan58°≈78×1.60=124.8(m)
在Rt△ADE中,tan∠DAE=,
∴DE=AE⋅tan48°≈78×1.11=86.58(m)
∴CD=CE−DE=124.8−86.58≈38(m)
答:乙建筑物的高度CD约为38m.
此题考查解直角三角形,三角函数,解题关键在于作辅助线和掌握三角函数定义.
17、(1)50;(2)见解析;(3)108°;)(4)160.
【解析】
(1)根据乘车的人数是25,所占的百分比是50%,即可求得总人数;
(2)利用总人数乘以步行对应的百分比即可求得步行的人数,从而补全统计图;
(3)根据三部分百分比的和是1求得“骑车”对应的百分比,再乘以360°可得答案;
(4)利用总人数800乘以步行对应的百分比即可.
【详解】
解:(1)该班总人数是:25÷50%=50(人),
故答案为:50;
(2)步行的人数是:50×20%=10(人).
;
(3)“骑车”部分所对应的百分比是:1﹣50%﹣20%=30%,
所以扇形图中表示骑车部分所占扇形的圆心角为360°×30%=108°,
故答案为:108°;
(4)估计该年级步行上学的学生人数是:800×20%=160(人).
本题考查的是条形统计图和扇形统计图的综合运用以及样本估计总计.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
18、(1)y=﹣20x+14000;(2)商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)这100台电脑销售总利润的范围为12800≤y≤13500
【解析】
分析:(1)据题意即可得出
(2)利用不等式求出x的范围,又因为是减函数,所以得出y的最大值,
(3)据题意得, y随x的增大而减小,进行求解.
详解:(1)由题意可得:
(2)据题意得, ,解得
∵
∴y随x的增大而减小,
∵x为正整数,
∴当x=25时,y取最大值,则
即商店购进25台A型电脑和75台B型电脑的销售利润最大;
(3)据题意得, 即 当时,解得x=20,不符合要求
y随x的增大而减小,
∴当x=25时,y取最大值,
即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y=13500元.
当x=60时,y取得最小值,此时y=12800元.
故这100台电脑销售总利润的范围为12800≤y≤13500.
点睛:考查了一次函数的应用,一元一次不等式的应用,解题的关键是掌握一次函数的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣4≤x<1
【解析】
先利用待定系数法求出y=kx的表达式,然后求出y=1时对应的x值,再根据函数图象得出结论即可.
【详解】
解:∵已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣1),
∴﹣4k=﹣1,
解得:k=,
∴解析式为y=x,
当y=1时,x=1,
∵由函数图象可知,当x≥﹣4时一次函数y=ax+b在一次函数y=kx图象的下方,
∴关于x的不等式ax+b≤kx<1的解集是﹣4≤x<1.
故答案为:﹣4≤x<1.
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
20、(-1,2)
【解析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
【详解】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
故Q坐标为(-1,2).
故答案为:(-1,2).
此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
21、 ,
【解析】
根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.
【详解】
a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,
数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,
数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3, a5,a4,a3,a1, a1,处在第3、4位的数据的平均数为 ,
故答案为:,.
考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.
22、2
【解析】
由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.
【详解】
∵数据1、1、6、6、x的众数为6、中位数为1,
∴x<1且x≠1,
则x可取2、3、4均可,
故答案为2.
考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
23、.
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
二、解答题(本大题共3个小题,共30分)
24、(1),17,17;(2)众数.
【解析】
(1)根据平均数、中位数和众数的求法,进行计算,即可得到答案;
(2)因为众数最具有代表性,所以选择众数.
【详解】
解:(1)这组数据的平均数为=,
中位数为=17,
众数为17;
故答案为:,17,17;
(2)用众数作为他们年龄的代表值较好.
本题考查平均数、中位数和众数,解题的关键是掌握平均数、中位数和众数的求法.
25、(1);(2)见解析.
【解析】
根据题意分别求出当时,每平方米的售价应为元,当时,每平方米的售价应为元;
根据购买方案一、二求出实交房款的关系式,然后分情况讨论即可确定那种方案合算.
【详解】
当时,每平方米的售价应为:
元平方米
当时,每平方米的售价应为:
元平方米.
;
第十六层楼房的每平方米的价格为:元平方米,
按照方案一所交房款为:元,
按照方案二所交房款为:元,
当时,即,
解得:,
当时,即,
解得:.
当时,即,
解得:,
当时,方案二合算;当时,方案一合算当时,方案一与方案二一样.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
26、(1)30元,32元(2)(3)当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B品牌的计算机更合算.
【解析】
(1)根据“购买2个A品牌和3个B品牌的计算器共需156元”和“购买3个A品牌和1个B品牌的计算器共需122元”列方程组求解即可.
(2)根据题意分别列出函数关系式.
(3)由、、列式作出判断.
【详解】
解:(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:
,解得.
答:A,B两种品牌计算机的单价分别为30元,32元.
(2)由题意可知:,即.
当时,;
当时,,即.
(3)当购买数量超过5个时,.
①当时,,解得,
即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;
②当时,,解得,
即当购买数量为30个时,购买两种品牌的计算机花费相同;
③当时,,解得,
即当购买数量超过30个时,购买B品牌的计算机更合算.
题号
一
二
三
四
五
总分
得分
物体的质量(kg)
0
1
2
3
4
5
弹簧的长度(cm)
10
12.5
15
17.5
20
22.5
2025届巢湖市重点中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届巢湖市重点中学数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省合肥市瑶海区九级九年级数学第一学期开学质量检测试题【含答案】: 这是一份2025届安徽省合肥市瑶海区九级九年级数学第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省合肥市巢湖市数学九上开学学业质量监测试题【含答案】: 这是一份2025届安徽省合肥市巢湖市数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。