|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年安徽省合肥市肥西县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年安徽省合肥市肥西县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】01
    2024-2025学年安徽省合肥市肥西县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】02
    2024-2025学年安徽省合肥市肥西县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年安徽省合肥市肥西县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

    展开
    这是一份2024-2025学年安徽省合肥市肥西县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各点中,在反比例函数的图象上的点是( )
    A.B.C.D.
    2、(4分)(2017广西贵港第11题)如图,在中, ,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是 ( )
    A.B.C.D.
    3、(4分)两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是( )
    A.平均数相等
    B.中位数相等
    C.众数相等
    D.方差相等
    4、(4分)如图,△ABC中,∠C=90°,E、F分别是AC、BC上两点,AE=8,BF=6,点P、Q、D分别是AF、BE、AB的中点,则PQ的长为( )
    A.4B.5C.6D.8
    5、(4分)如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( )
    A.7B.8C.9D.10
    6、(4分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )
    A.2B.2C.D.3
    7、(4分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是( )
    A.摸到红球是必然事件
    B.摸到白球是不可能事件
    C.摸到红球与摸到白球的可能性相等
    D.摸到红球比摸到白球的可能性大
    8、(4分)在平行四边形ABCD中,∠A=55°,则∠D的度数是( )
    A.105°B.115°C.125°D.55°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一种圆柱形口杯(厚度忽略不计),测得内部底面半径为,高为.吸管如图放进杯里,杯口外面露出部分长为,则吸管的长度为_____.
    10、(4分)如图,正方形ABCD的边长为10,点A的坐标为,点B在y轴上.若反比例函数的图像经过点C,则k的值为_____.
    11、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
    12、(4分)在平面直角坐标系中,点(﹣7,m+1)在第三象限,则m的取值范围是_____.
    13、(4分)命题“等腰三角形两底角相等”的逆命题是_______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,一次函数的图象与轴交于点A,正方形ABCD的顶点B在轴上,点D在直线上,且AO=OB,反比例函数()经过点C.
    (1)求一次函数和反比例函数的解析式;
    (2)点P是轴上一动点,当的周长最小时,求出P点的坐标;
    (3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标.
    15、(8分)已知在中,是的中点,,垂足为,交于点,且.
    (1)求的度数;
    (2)若,,求的长.
    16、(8分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.
    (1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;
    (2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
    (3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.
    17、(10分)如图,在正方形ABCD中,E、F分别为AB、BC的中点,连接CE、DF,将△CBE沿CE对折,得到△CGE,延长EG交CD的延长线于点H。
    (1)求证:CE⊥DF;
    (2)求的值.
    18、(10分)今年人夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在处测得航标在北偏东方向上,前进米到达处,又测得航标在北偏东方向上,如图在以航标为圆心,米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险? ()
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在一个内角为60°的菱形中,一条对角线长为16,则另一条对角线长等于_____.
    20、(4分)将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.
    21、(4分)如果关于x的方程+1有增根,那么k的值为_____
    22、(4分)如图,矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、BC于点E. F,连接CE,则△DCE的面积为___.
    23、(4分)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________

    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
    (l)当点C与点O重合时,DE= ;
    (2)当CE∥OB时,证明此时四边形BDCE为菱形;
    (3)在点C的运动过程中,直接写出OD的取值范围.
    25、(10分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
    (1)求反比例函数的表达式;
    (2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
    26、(12分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据反比例函数解析式可得xy=6,然后对各选项分析判断即可得解.
    【详解】
    解:∵,
    ∴xy=6,
    A、∵2×3=6,
    ∴点(2,3)在反比例函数图象上,故本选项正确;
    B、∵1×4=4≠6,
    ∴点(1,4)不在反比例函数图象上,故本选项错误;
    C、∵-2×3=-6≠6,
    ∴点(-2,3)不在反比例函数图象上,故本选项错误;
    D、∵-1×4=-4≠6,
    ∴点(-1,4)不在反比例函数图象上,故本选项错误.
    故选:A.
    本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.
    2、B
    【解析】
    试题解析:如图连接PC.
    在Rt△ABC中,∵∠A=30°,BC=2,
    ∴AB=4,
    根据旋转不变性可知,A′B′=AB=4,
    ∴A′P=PB′,
    ∴PC=A′B′=2,
    ∵CM=BM=1,
    又∵PM≤PC+CM,即PM≤3,
    ∴PM的最大值为3(此时P、C、M共线).
    故选B.
    3、D
    【解析】
    根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.
    【详解】
    (98+99+99+100)=99,(98.5+99+99+99.5)=99,平均数相等,A不合题意;
    两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;
    [(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2][(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)2],方差不相等,D符合题意.
    故选D.
    本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.
    4、B
    【解析】
    利用三角形中位线定理即可作答.
    【详解】
    ∵点P、Q、D分别是AF、BE、AB的中点

    ∴DQ∥AE,PD∥BF
    ∵∠C=90°
    ∴AE⊥BF
    ∴DQ⊥PD
    ∴∠PDQ=90°
    ∴.
    故选 B.
    本题考查的知识点是勾股定理的运用,解题关键是证得∠PDQ=90°.
    5、B
    【解析】
    先利用中点的定义求得AC的长,然后运用勾股定理即可快速作答.
    【详解】
    解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
    ∴DE=AC=5,
    ∴AC=1.
    在直角△ACD中,∠ADC=90°,AD=6,AC=1,则根据勾股定理,得
    CD==8
    故答案为B;
    考查勾股定理时,条件常常不是完全具备,需要挖掘隐含条件,才能正确的使用勾股定理.本题还考查了直角三角形斜边上的中线长度等于斜边的一半.
    6、C
    【解析】
    解析:∵△ABC是等边三角形P是∠ABC的平分线,
    ∴∠EBP=∠QBF=30°,
    ∵BF=2,FQ⊥BP,
    ∴BQ=BF•cs30°=2×=,
    ∵FQ是BP的垂直平分线,
    ∴BP=2BQ=2,
    在Rt△BEF中,
    ∵∠EBP=30°,
    ∴PE=BP=.
    故选C.
    7、D
    【解析】
    A.摸到红球是随机事件,故此选项错误;
    B.摸到白球是随机事件,故此选项错误;
    C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;
    D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;
    故选D.
    8、C
    【解析】
    根据平行四边形的性质解答即可.
    【详解】
    ∵平行四边形的两组对边平行,∴∠A+∠D=180°, ∵∠A=55°,∴∠D=180°-55°=125°,故选C.
    本题考查了平行四边形的性质.此题比较简单,注意熟记定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、17
    【解析】
    根据吸管、杯子的直径及高恰好构成直角三角形,求出的长,再由勾股定理即可得出结论.
    【详解】
    如图,连接,
    杯子底面半径为,高为,
    ,,
    吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,

    杯口外面露出,
    吸管的长为:.
    故答案为:.
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.
    10、1
    【解析】
    过点作轴于,根据正方形的性质可得,,再根据同角的余角相等求出,然后利用“角角边”证明和全等,根据全等三角形对应边相等可得,,再求出,然后写出点的坐标,再把点的坐标代入反比例函数解析式计算即可求出的值.
    【详解】
    解:如图,过点作轴于,在正方形中,,,



    点的坐标为,



    在和中,


    ,,

    点的坐标为,
    反比例函数的图象过点,

    故答案为1.
    本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点的坐标是解题的关键.
    11、①②④.
    【解析】
    ①易证△ABD∽△ADF,结论正确;
    ②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
    ③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
    ④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
    【详解】
    解:如图,在线段DE上取点F,使AF=AE,连接AF,
    则∠AFE=∠AEF,
    ∵AB=AC,
    ∴∠B=∠C,
    ∵∠ADE=∠B=a,
    ∴∠C=∠ADE=a,
    ∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
    ∴∠DAF=∠CDE,
    ∵∠ADE+∠CDE=∠B+∠BAD,
    ∴∠CDE=∠BAD,
    ∴∠DAF=∠BAD,
    ∴△ABD∽△ADF
    ∴,即AD2=AB•AF
    ∴AD2=AB•AE,
    故①正确;
    由①可知:,
    当AD⊥BC时,由勾股定理可得:

    ∴,
    ∴,即,故②正确;
    如图2,作AH⊥BC于H,
    ∵AB=AC=5,
    ∴BH=CH=BC=4,
    ∴,
    ∵AD=AD′=,
    ∴DH=D′H=,
    ∴BD=3或BD′=5,CD=5或CD′=3,
    ∵∠B=∠C
    ∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
    故③不正确;
    如图3,AD⊥BC,DE⊥AC,
    ∴∠ADE+∠DAE=∠C+∠DAE=90°,
    ∴∠ADE=∠C=∠B,
    ∴BD=4;
    如图4,DE⊥BC于D,AH⊥BC于H,
    ∵∠ADE=∠C,
    ∴∠ADH=∠CAH,
    ∴△ADH∽△CAH,
    ∴,即,
    ∴DH=,
    ∴BD=BH+DH=4+==6.1,
    故④正确;
    综上所述,正确的结论为:①②④;
    故答案为:①②④.
    本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
    12、m<-1
    【解析】
    根据第三象限内点的横坐标是负数,纵坐标是正数列出不等式,然后求解即可.
    【详解】
    :∵点(,)在第三象限,
    ∴m+1<0,
    解不等式得,m<-1,
    所以,m的取值范围是m<-1.
    故答案为m<-1.
    本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    13、有两个角相等的三角形是等腰三角形
    【解析】
    根据逆命题的条件和结论分别是原命题的结论和条件写出即可.
    【详解】
    ∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.
    故答案为:有两个角相等的三角形是等腰三角形.
    本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=x+1,;(1)P(,0);(3)M的坐标为(,1),(,6)或(,﹣1).
    【解析】
    (1)设一次函数y=kx+1的图象与x轴交于点E,连接BD,利用一次函数图象上点的坐标特征、正方形的性质以及等腰三角形的性质可得出点E的坐标,由点E的坐标利用待定系数法可求出一次函数解析式,由BD∥OA,OE=OB可求出BD的长,进而可得出点D的坐标,由正方形的性质可求出点C的坐标,再利用反比例函数图象上点的坐标特征可求出反比例函数解析式;
    (1)作点D关于x轴的对称点D',连接CD'交x轴于点P,此时△PCD的周长取最小值,由点D的坐标可得出点D'的坐标,由点C,D'的坐标,利用待定系数法可求出直线CD'的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;
    (3)设点M的坐标为(x,y),分DP为对角线、CD为对角线及CP为对角线三种情况,利用平行四边形的性质(对角线互相平分)可求出点M的坐标,此题得解.
    【详解】
    (1)设一次函数y=kx+1的图象与x轴交于点E,连接BD,如图1所示.
    当x=0时,y=kx+1=1,∴OA=1.
    ∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=OA=1,点E的坐标为(﹣1,0).
    将E(﹣1,0)代入y=kx+1,得:﹣1k+1=0,解得:k=1,∴一次函数的解析式为y=x+1.
    ∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.
    ∵OE=OB=1,∴BD=1OA=4,∴点D的坐标为(1,4).
    ∵四边形ABCD为正方形,∴点C的坐标为(1+1﹣0,0+4﹣1),即(4,1).
    ∵反比例函数y(x>0)经过点C,∴n=4×1=8,∴反比例函数解析式为y.
    (1)作点D关于x轴的对称点D',连接CD'交x轴于点P,此时△PCD的周长取最小值,如图1所示.
    ∵点D的坐标为(1,4),∴点D'的坐标为(1,﹣4).
    设直线CD'的解析式为y=ax+b(a≠0),将C(4,1),D'(1,﹣4)代入y=ax+b,得:,解得:,∴直线CD'的解析式为y=3x﹣2.
    当y=0时,3x﹣2=0,解得:x,∴当△PCD的周长最小时,P点的坐标为(,0).
    (3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.
    ①当DP为对角线时,,解得:,∴点M1的坐标为(,1);
    ②当CD为对角线时,,解得:,∴点M1的坐标为(,6);
    ③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣1).
    综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,1),(,6)或(,﹣1).
    本题考查了待定系数法求一次函数解析式、反比例函数图象上点的坐标特征、正方形的性质、等腰三角形的性质、三角形中位线、反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)利用等腰三角形的性质及正方形的性质,求出点E,C的坐标;(1)利用两点之间线段最短,确定点P的位置;(3)分DP为对角线、CD为对角线及CP为对角线三种情况,利用平行四边形的对角线互相平分求出点M的坐标.
    15、(1)90°(1)1.4
    【解析】
    (1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;
    (1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.
    【详解】
    (1)连接CE,∵D是BC的中点,DE⊥BC,
    ∴CE=BE.
    ∵BE1−AE1=AC1,
    ∴AE1+AC1=CE1.
    ∴△AEC是直角三角形,∠A=90°;
    (1)在Rt△BDE中,BE==2.
    所以CE=BE=2.
    设AE=x,则在Rt△AEC中,AC1=CE1−AE1,
    所以AC1=12−x1.
    ∵BD=4,
    ∴BC=1BD=3.
    在Rt△ABC中,根据BC1=AB1+AC1,
    即64=(2+x)1+12−x1,
    解得x=1.4.
    即AE=1.4.
    本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.
    16、(1),;(2)结论仍然成立,理由:略;(3)
    【解析】
    (1)连接AC,根据菱形的性质和等边三角形的性质得出△BAP≌△CAE,再延长交于, 根据全等三角形的性质即可得出;
    (2)结论仍然成立.证明方法同(1);
    (3)根据(2)可知△BAP≌△CAE,根据勾股定理分别求出AP和EC的长,即可解决问题;
    【详解】
    (1)如图1中,结论:,.
    理由:连接.
    ∵四边形是菱形,,
    ∴,都是等边三角形,,
    ∴,,
    ∵是等边三角形,
    ∴,,
    ∵,
    ∴,

    ∴,
    ∴,,
    延长交于,
    ∵,
    ∴,
    ∴,即.
    故答案为,.
    (2)结论仍然成立.
    理由:选图2,连接交于,设交于.
    ∵四边形是菱形,,
    ∴,都是等边三角形,,
    ∴,,
    ∵是等边三角形,
    ∴,,
    ∴.

    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,即.
    选图3,连接交于,设交于.
    ∵四边形ABCD是菱形,,
    ∴,都是等边三角形,,
    ∵是等边三角形,
    ∴,,
    ∴.

    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,即.
    (3),
    由(2)可知,,
    在菱形中,,
    ∴,
    ∵,,
    在中,,
    ∴,
    ∵与是菱形的对角线,
    ∴,,
    ∴,
    ∴,,
    ∴,
    在中,,
    ∴.
    本题考查四边形综合题、菱形的性质、等边三角形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是正确添加常用辅助线,寻找全等三角形解决问题,属于中考压轴题.
    17、(1)见解析;(2).
    【解析】
    (1)运用△BCE≌Rt△CDF(SAS),再利用角的关系求得∠CKD=90°即可解题.
    (2)设正方形ABCD的边长为2a,设CH=x,利用勾股定理求出a与x之间的关系即可解决问题.
    【详解】
    (1)证明:设EC交DF于K.
    ∵E,F分别是正方形ABCD边AB,BC的中点,
    ∴CF=BE,
    在Rt△BCE和Rt△CDF中,

    ∴△BCE≌Rt△CDF(SAS),
    ∠BCE=∠CDF,
    又∵∠BCE+∠ECD=90°,
    ∴∠CDF+∠ECD=90°,
    ∴∠CKD=90°,
    ∴CE⊥DF.
    (2)解:设正方形ABCD的边长为2a.
    EB=EG,∠BEC=∠CEG,∠EGC=∠B=90°
    ∵CD∥AB,
    ∴∠ECH=∠BEC,∴∠ECH=∠CEH,
    ∴EH=CH,
    ∵BE=EG=a,CD=CG=2a,
    在Rt△CGH中,设CH=x,
    ∴x2=(x-a)2+(2a)2,
    ∴x=a,
    ∴GH=EH-EG=a-a=a,
    ∴.
    本题考查的是旋转变换、翻折变换、正方形的性质、全等三角形的判定与性质等知识,熟知旋转、翻折不变性是解答此题的关键,学会构建方程解决问题.
    18、没有被浅滩阻碍的危险
    【解析】
    过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.
    【详解】
    过点作,设垂足为,
    在中,
    在中,

    米.
    米>米,故没有危险.
    答:若船继续前进没有被浅滩阻碍的危险.
    本题考查了解直角三角形的知识,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、16或
    【解析】
    画出图形,根据菱形的性质,可得△ABC为等边三角形,分两种情况讨论,由直角三角形的性质可求解.
    【详解】
    由题意得,∠ABC=60°,AC=16,或BD=16
    ∵四边形ABCD是菱形,
    ∴BA=BC,AC⊥BD,AO=OC,BO=OD,∠ABD=30°
    ∴△ABC是等边三角形,
    ∴AC=AB=BC
    当AC=16时,
    ∴AO=8,AB=16
    ∴BO=8
    ∴BD=16
    当BD=16时,
    ∴BO=8,且∠ABO=30°
    ∴AO=
    ∴AC=
    故答案为:16或
    本题考查了菱形的性质,解答本题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.
    20、
    【解析】
    二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.
    【详解】
    将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,
    故答案为.
    21、4
    【解析】
    分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出k的值.
    【详解】
    去分母得:1=k-3+x-2,
    由分式方程有增根,得到x-2=0,即x=2,
    把x=2代入整式方程得:k=4,
    故答案为4
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    22、6
    【解析】
    根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算,再利用三角形面积公式解答即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴CD=AB=4,AD=BC=8,
    ∵EO是AC的垂直平分线,
    ∴AE=CE,
    设CE=x,则ED=AD−AE=8−x,
    在Rt△CDE中,CE=CD+ED,
    即x=4 +(8−x) ,
    解得:x=5,
    即CE的长为5,
    DE=8−5=3,
    所以△DCE的面积= ×3×4=6,
    故答案为:6.
    此题考查线段垂直平分线的性质,矩形的性质,解题关键在于得出AE=CE.
    23、
    【解析】
    因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.
    【详解】
    解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,
    ∴△AFD′≌△CFB(AAS),
    ∴D′F=BF,
    设D′F=x,则AF=6−x,
    在Rt△AFD′中,(6−x)2=x2+42,
    解之得:x=,
    ∴AF=AB−FB=6−=,
    ∴S△AFC=•AF•BC=.
    故答案为:.
    本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1;(1)证明见解析;(3)≤OD≤1.
    【解析】
    (1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
    (1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
    (3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
    【详解】
    解:∵直线AB的解析式为y=﹣1x+4,
    ∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
    (1)当点C与点O重合时如图所示,
    ∵DE垂直平分BC(BO),
    ∴DE是△BOA的中位线,
    ∴DE=OA=1;
    故答案为:1;
    (1)当CE∥OB时,如图所示:
    ∵DE为BC的中垂线,
    ∴BD=CD,EB=EC,
    ∴∠DBC=∠DCB,∠EBC=∠ECB,
    ∴∠DCE=∠DBE,
    ∵CE∥OB,
    ∴∠CEA=∠DBE,
    ∴∠CEA=∠DCE,
    ∴BE∥DC,
    ∴四边形BDCE为平行四边形,
    又∵BD=CD,
    ∴四边形BDCE为菱形.
    (3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
    当点C与点A重合时,OD取得最小值,如图所示:
    在Rt△AOB中,AB==1,
    ∵DE垂直平分BC(BA),
    ∴BE=BA=,
    易证△BDE∽△BAO,
    ∴,即,
    解得:BD=,
    则OD=OB﹣BD=4﹣=.
    综上可得:≤OD≤1.
    本题考查一次函数综合题.
    25、(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
    【解析】
    (1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;
    (2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.
    【详解】
    (1)由旋转得:OC=OA=,∠AOC=135°,
    过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,
    在Rt△OMC中,∠COM=45°,OC=,
    ∴OM=CM=1,
    ∴点C(1,1),代入y=得:k=1,
    ∴反比例函数的关系式为:y=,
    答:反比例函数的关系式为:y=
    (2)①当点E在第三象限反比例函数的图象上,如图1,图2,

    ∵点D在y轴上,AEDB是平行四边形,
    ∴AE∥DB,AE=BD,AE⊥OA,
    当x=-时,y==-,
    ∴E(-,-)
    ∵B(0,-1),BD=AE=,
    当点D在B的下方时,
    ∴D(0,-1-)
    当点D在B的上方时,
    ∴D(0,-1+),
    ②当点E在第一象限反比例函数的图象上时,如图3,
    过点E作EN⊥y轴,垂足为N,
    ∵ABED是平行四边形,
    ∴AB=DE,AB=DE,
    ∴∠ABO=∠EDO,
    ∴△AOB≌△END (AAS),
    ∴EN=OA=,DN=OB=1,
    当x=时,代入y=得:y=,
    ∴E(,),
    ∴ON=,OD=ON+DN=1+,
    ∴D(0,1+)
    考查反比例函数图象上点的坐标特征、平行四边形的性质、以及全等三角形的判定和性质等知识,画出不同情况下的图形是解决问题的关键.
    26、2.5
    【解析】
    一次函数的解析式为y=kx+b,图像经过(﹣4,15),(6,﹣5)两点,把这两点代入函数即可求出k、b的值,再把P(m,2)代入函数即可求出m值.
    【详解】
    解:设一次函数解析式为y=kx+b,
    把(﹣4,15),(6,﹣5)代入得,
    解得:,
    所以一次函数解析式为y=﹣2x+7,
    把P(m,2)代入y=﹣2x+7,可得:﹣2m+7=2,
    解得:m=2.5.
    本题主要考查了待定系数法求一次函数解析式,牢牢掌握该法是解答本题的关键.
    题号





    总分
    得分
    相关试卷

    安徽省潜山市2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份安徽省潜山市2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列图形中的角是圆周角的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。

    2023-2024学年安徽省十校联考九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年安徽省十校联考九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列命题等内容,欢迎下载使用。

    2023-2024学年安徽省合肥市蜀山区琥珀中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年安徽省合肥市蜀山区琥珀中学九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列函数是二次函数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map