2023-2024学年浙江省杭州城区6学校八上数学期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.某种产品的原料提价,因而厂家决定对产品进行提价,现有种方案:①第一次提价,第二次提价;②第一次提价,第二次提价;③第一次、第二次提价均为.其中和是不相等的正数.下列说法正确的是( )
A.方案①提价最多B.方案②提价最多
C.方案③提价最多D.三种方案提价一样多
2.如图,直线,点、在上,点在上,若、,则的大小为( )
A.B.C.D.
3.点(2,-3)关于原点对称的点的坐标是( )
A.(-2,3)B.(2,3)C.(-3,-2)D.(2,-3)
4.一次函数y=﹣2x+3的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;正确的是( )
A.①②B.①③C.①④D.①③④
6.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示.根据图象求得y与t的关系式为,这里的常数“-1.5”,“25”表示的实际意义分别是( )
A.“-1.5”表示每小时耗油1.5升,“25”表示到达乙地时油箱剩余油25升
B.“-1.5”表示每小时耗油1.5升,“25”表示出发时油箱原有油25升
C.“-1.5”表示每小时耗油1.5升,“25”表示每小时行驶25千米
D.“-1.5”表示每小时行驶1.5千米,“25”表示甲乙两地的距离为25千米
7.如图,图形中,具有稳定性的是( )
A.B.C.D.
8.如图,是的中线,E,F分别是和延长线上的点,且,连接,,下列说法:①和面积相等;②;③;④;⑤和周长相等.其中正确的个数有( )
A.1个B.2个C.3个D.4个
9.下列命题属于真命题的是( )
A.同旁内角相等,两直线平行B.相等的角是对顶角
C.平行于同一条直线的两条直线平行D.同位角相等
10.下列图形中,不是轴对称图形的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.若是一个完全平方式,则m=________
12.因式分解:________;________.
13.在实数范围内分解因式:_______________________.
14.分解因式:x3y﹣4xy=_____.
15.将一副学生用三角板(即分别含30°角、45°角的直角三角板)按如图所示方式放置,则∠1=____°.
16.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅有0.00000000034米,将数据0.00000000034用科学记数法表示为_______.
17.如图,在平面直角坐标系中,一次函数y=2x﹣4的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是_____.
18.已知一个三角形的两边长分别为2和5,第三边的取值范围为______.
三、解答题(共66分)
19.(10分)一辆卡车装满货物后,高4m、宽2.4m,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?
20.(6分)阅读下列材料:
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.
下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.
解:设x2﹣4x=y
原式=(y+1)(y+7)+9(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
请根据上述材料回答下列问题:
(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;
(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
21.(6分)如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长度的速度从 A向 D运动,到D点后停止运动;Q沿着 路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动. 设运动时间为 t秒,问:
(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形
(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?
22.(8分)如图1,点B,C分别是∠MAN的边AM、AN上的点,满足AB=BC,点P为射线的AB上的动点,点D为点B关于直线AC的对称点,连接PD交AC于E点,交BC于点F。
(1)在图1中补全图形;
(2)求证:∠ABE=∠EFC;
(3)当点P运动到满足PD⊥BE的位置时,在射线AC上取点Q,使得AE=EQ,此时是否是一个定值,若是请直接写出该定值,若不是,请说明理由.
23.(8分)某公司为增加员工收入,提高效益,今年提出如下目标,和去年相比,在产品的出厂价增加的前提下,将产品成本降低20%,使产品的利润率()较去年翻一番,求今年该公司产品的利润率.
24.(8分)张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.
(1)甲采摘园的门票是 元,乙采摘园优惠前的草莓单价是每千克 元;
(2)当x>10时,求y乙与x的函数表达式;
(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.
25.(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.
26.(10分)已知△ABC等边三角形,△BDC是顶角120°的等腰三角形,以D为顶点作60°的角,它的两边分别与AB.AC所在的直线相交于点M和N,连接MN.
(1)如图1,当点M、点N在边AB、AC上且DM=DN时,探究:BM、MN、NC之间的关系,并直接写出你的结论;
(2)如图2,当点M、点N在边AB、AC上,但DM≠DN时,(1)中的结论还成立吗?写出你的猜想并加以证明;
(3)如图3,若点M、N分别在射线AB、CA上,其他条件不变,(1)中的结论还成立吗?若成立,写出你的猜想;若不成立,请直接写出新的结论.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、A
4、C
5、B
6、B
7、B
8、C
9、C
10、A
二、填空题(每小题3分,共24分)
11、±1
12、
13、
14、xy(x+2)(x-2)
15、1.
16、
17、y=x﹣1
18、.
三、解答题(共66分)
19、这辆卡车不能通过截面如图所示的隧道.
20、(1)C;(2)(x﹣2)1;(3)(x+1)1.
21、(1)秒或秒;(2)15秒
22、(1)见详解;(2)见详解;(3)是定值,
23、今年该公司产品的利润率.
24、(1)甲采摘园的门票是60元,乙采摘园优惠前的草莓单价是每千克30元;(2)y乙=12x+180;(3)采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同
25、-5
26、(1)BM+CN=MN;(2)成立;证明见解析;(3)MN=CN-BM.
2023-2024学年浙江省杭州城区6学校九年级数学第一学期期末学业水平测试试题含答案: 这是一份2023-2024学年浙江省杭州城区6学校九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数中, 是的反比例函数等内容,欢迎下载使用。
2023-2024学年浙江省杭州市景成实验学校数学八上期末学业水平测试试题含答案: 这是一份2023-2024学年浙江省杭州市景成实验学校数学八上期末学业水平测试试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,用三角尺可按下面方法画角平分线,如图,若,,,则的度数为等内容,欢迎下载使用。
浙江省杭州萧山回澜2023-2024学年八上数学期末学业水平测试模拟试题含答案: 这是一份浙江省杭州萧山回澜2023-2024学年八上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,下列等式成立的是等内容,欢迎下载使用。