2024年天津市南开区数学九年级第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.1.则下列说法中,正确的是( )
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定
2、(4分)某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是( )
A.总体 B.总体中的一个样本 C.样本容量 D.个体
3、(4分)若分式有意义,则x的取值应该该满足( )
A.x=B.x=C.x≠D.x≠
4、(4分)如图所示,函数和的图象相交于(–1,1),(2,2)两点.当时,x的取值范围是( )
A.x<–1B.x<–1或x>2C.x>2D.–1
A. B.C. D.
6、(4分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为( )
A.12B.14C.16D.20
7、(4分)下列函数中,y随x的增大而减小的函数是( )
A.B.C.D.
8、(4分)点P(2,3)到y轴的距离是( )
A.3B.2C.1D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)设函数与的图象的交点坐标为,则的值为__________.
10、(4分)如图,在▱ABCD中,,,则______.
11、(4分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.
12、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
13、(4分)在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)
(2)(﹣)(+)+×
15、(8分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.
16、(8分)如图1,在正方形中,是对角线,点在上,是等腰直角三角形,且,点是的中点,连结与.
(1)求证:.
(2)求证:.
(3)如图2,若等腰直角三角形绕点按顺时针旋转,其他条件不变,请判断的形状,并证明你的结论.
17、(10分)市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分:“了解很多”、“了解较多”、“了解较少”、“不了解”),对本市某所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅不完整统计图.
根据以上信息,解答下列题.
(1)补全条形统计图.
(2)本次抽样调查了多少名学生?在扇形统计图中,求“”所应的圆心角的度数.
(3)该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.
18、(10分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
(1)求直线BC的解析式;
(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
20、(4分)在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。
21、(4分)如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.
22、(4分)已知关于x的一元二次方程(a2﹣1)x2+3ax﹣3=0的一个解是x=1,则a的值是_____.
23、(4分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并将解集在数轴上表示出来.
25、(10分)学校新到一批实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.
(1)王师傅单独整理这批实验器材需要多少分钟完成;
(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?
26、(12分)如图,某一时刻垂直于地面的大楼的影子一部分在地上,另一部分在斜坡上.已知坡角,米,米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,
∵0.1<0.28,∴乙的成绩比甲的成绩稳定.故选B.
2、B
【解析】试题解析:首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.4株葡萄的产量是样本.
故选B.
3、C
【解析】
由题意根据分式有意义的条件是分母不等于零列出不等式,解不等式即可得到答案.
【详解】
解:分式有意义,则2x﹣3≠0,
解得,x≠.
故选:C.
本题考查分式有意义的条件,熟练掌握分式有意义的条件即分母不等于零是解题的关键.
4、B
【解析】
试题解析:当x≥0时,y1=x,又,
∵两直线的交点为(1,1),
∴当x<0时,y1=-x,又,
∵两直线的交点为(-1,1),
由图象可知:当y1>y1时x的取值范围为:x<-1或x>1.
故选B.
5、D
【解析】
根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.
【详解】
∵二次根式在实数范围内有意义,
∴被开方数x+2为非负数,
∴x+2≥0,
解得:x≥-2.
故答案选D.
本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.
6、C
【解析】
有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.
【详解】
解:|a-c|+=0,
∴a=c,b=8,
,PQ∥y轴,
∴PQ=8-2=6,
将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,
,
∴a=4,
∴c=4,
∴a+b+c=4+8+4=16;
故选:C.
本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.
7、C
【解析】
根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.
【详解】
解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,
C选项中,k=<0,y随x的增大而减少.
故选:C.
本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
8、B
【解析】
根据点的到y轴的距离等于横坐标的绝对值解答.
【详解】
解:点P(1,3)到y轴的距离为1.
故选:B.
本题考查了点的坐标,熟记点的到y轴的距离等于横坐标的绝对值,到x轴的距离等于纵坐标的绝对值是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、−.
【解析】
把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得的值即可.
【详解】
∵函数与y=x−1的图象的交点坐标为(a,b),
∴b= ,b=a−1,
∴=a−1,
a−a−2=0,
(a−2)(a+1)=0,
解得a=2或a=−1,
∴b=1或b=−2,
∴的值为−.
故答案为:−.
此题考查反比例函数与一次函数的交点问题,解题关键在于把交点坐标代入2个函数后,得到2个方程
10、.
【解析】
先证明是等腰直角三角形,再由勾股定理求出AD,即可得出BC的长.
【详解】
四边形ABCD是平行四边形,
,,,
,,
即是等腰直角三角形,
,
故答案为:.
本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明是等腰直角三角形是解决问题的关键.
11、.
【解析】
根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.
【详解】
设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.
故答案为:1000(1+x)2=1.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
12、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
13、2cm或22cm
【解析】
如图,设∠A的平分线交BC于E点,
∵AD∥BC,
∴∠BEA=∠DAE,
又∵∠BAE=∠DAE,
∴∠BEA=∠BAE
∴AB=BE.
∴BC=3+4=1.
①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;
②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.
所以□ABCD的周长为22cm或2cm.
故答案为:22cm或2cm.
点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)3.
【解析】
(1)先化简各二次根式,再合并同类二次根式;
(2)根据二次根式的计算法则进行计算即可.
【详解】
解:(1)原式= ;
(2)原式=6-5+2=3.
15、详见解析.
【解析】
首先判定四边形AEFD是平行四边形,然后证明DF=EF,进而证明出四边形AEFD是菱形.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∵EF∥AD,
∴四边形AEFD是平行四边形,
∵DE平分∠ADC,
∴∠1=∠2,
∵EF∥AD,
∴∠1=∠DEF,
∴∠2=∠DEF,
∴DF=EF,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.
本题主要考查菱形的判定定理,掌握邻边相等的平行四边形是菱形是解题的关键.
16、 (1)证明见解析;(2)证明见解析;(3)△CEF是等腰直角三角形.
【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,可得EF=DF=DG,CF=DF=DG,从而得到结论;
(2)根据等边对等角可得再根据三角形的一个外角等于和它不相邻的两个内角和求出然后根据正方形的对角线平分一组对角求出,求出,从而得证;
(3)延长交于,先求出,再根据两直线平行,内错角相等,求出,然后利用ASA证明和全等,根据全等三角形对应边相等,可得EG=DH,EF=FH,再求出CE=CH,然后根据等腰三角形三线合一的性质证明即可.
【详解】
解:(1)证明:,点是的中点,
,
∵正方形中,,点是的中点,
,
;
(2)证明:,
,
,
在正方形中,,
,
;
(3)解:是等腰直角三角形.
理由如下:如图,延长交于,
∵,
,
,
,
∵点是的中点,
,
在和中,
,
,
,
,
,
即,
(等腰三角形三线合一),,
∴△CEF是等腰直角三角形.
本题综合考查了直角三角形斜边上的中线性质,等腰直角三角形,正方形的性质,全等三角形的判定和性质等知识,在证明过程中,分解出基础图形是解题的关键.
17、(1)见解析;(2);(3)人.
【解析】
(1)利用A组的人数除以其占比即可得到这次被调查的学生人数,再求出C组的人数,即可补全统计图;
(2)求出D组的占比,乘以360°即可求解;
(3)利用总人数乘以C组占比即可求解.
【详解】
(1)由图可知这次被调查的学生人数为(人)
则所对应的人数为(人)补全图形如下
(2)此次抽样调查了100名学生,则扇形统计图中“”所对应部分的圆心角为
(3)估计这所中学的所有学生中,对“节约教育”内容“了解较少”的学生有(名)
此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.
18、 (1) BC的解析式是y=−x+3;(2)当0
【解析】
(1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
(2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.
【详解】
(1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
∵OC=3OA,
∴OC=3,即C的坐标是(0,3).
∵∠CBA=45∘,
∴∠OCB=∠CBA=45∘,
∴OB=OC=3,则B的坐标是(3,0).
设BC的解析式是y=kx+b,则,
解得:,
则BC的解析式是y=−x+3;
(2)当0
当t>2时,OP=2t−4,则S=×3(2t−4),即S=3t−6.
本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
20、8或4
【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.
【详解】
解:∵AD=9,AE:ED=1:2,
∴AE=3,ED=6,
又∵EF=2>AB,分情况讨论:
如下图:
当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,
CF=GD=ED+GE,在RT三角形GFE中,GE==2,
则此时CF=6+2=8;
如下图:
当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,
则此时CF=6-2=4;
综上,CF的长为8或4.
本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.
21、3
【解析】
根据直角三角形斜边的中线等于斜边的一半求解即可.
【详解】
∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,
∴,,
∴DO=AO=3.
故答案为3.
本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.
22、﹣1.
【解析】
直接把x=1代入进而方程,再结合a2﹣1≠2,进而得出答案.
【详解】
∵关于x的一元二次方程(a2﹣1)x2+3ax﹣3=2有一个根为x=1,
∴(a2﹣1)×1+3a×1﹣3=2,且a2﹣1≠2,
整理,得(a+1)(a﹣1)=2且(a+1)(a﹣1)≠2.
则a的值为:a=﹣1.
故答案是:﹣1.
本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
23、()n﹣1
【解析】
根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.
【详解】
∵直线l为正比例函数y=x的图象,
∴∠D1OA1=45°,
∴D1A1=OA1=1,
∴正方形A1B1C1D1的面积=1=()1﹣1,
由勾股定理得,OD1=,D1A2=,
∴A2B2=A2O=,
∴正方形A2B2C2D2的面积==()2﹣1,
同理,A3D3=OA3=,
∴正方形A3B3C3D3的面积==()3﹣1,
…
由规律可知,正方形AnBnCnDn的面积=()n﹣1,
故答案为()n﹣1.
本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、,数轴表示见解析
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
解:由①去括号、移项、合并同类项,得,
解得;
由②去分母、移项、合并同类项,得
解得
所以不等式组的解集为
不等式组的解集在数轴上表示为:
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.
25、(1)王师傅单独整理这批实验器材需要80分钟.(2)李老师至少要工作1分钟.
【解析】
(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;
(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.
【详解】
解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,
由题意,得:20(+)+20×=1,
解得:x=80,
经检验得:x=80是原方程的根.
答:王师傅单独整理这批实验器材需要80分钟.
(2)设李老师要工作y分钟,
由题意,得:(1﹣)÷≤30,
解得:y≥1.
答:李老师至少要工作1分钟.
考点:分式方程的应用;一元一次不等式的应用.
26、24米
【解析】
过点D作DH⊥CE,DG⊥AC,在两个直角三角形中分别求得DH=2,BH=2,然后根据同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求得AG=GD=BC+BH=22米,最后求得大楼的高度即可.
【详解】
解:过点作.
∵,
∴.
∵同一时刻1米的标杆影长为1米,
∴.
∴楼高(米).
本题考查了解直角三角形的应用,正确的构造两个直角三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
2024年天津市南开区一零九中学数学九年级第一学期开学考试试题【含答案】: 这是一份2024年天津市南开区一零九中学数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年天津市南开区复兴中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年天津市南开区复兴中学数学九上开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年天津市南开区津英中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024年天津市南开区津英中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。