2024年陕西省西安市益新中学九年级数学第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x,则( )
A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8
2、(4分)边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是( )cm.
A.3B.4C.6D.8
3、(4分)有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为( )
A.1 B.2 C.3 D.4
4、(4分)计算的结果是( )
A.2B.C.D.-2
5、(4分)已知,下列不等式中错误的是( )
A.B.C.D.
6、(4分)某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是( )
A.甲成绩的平均分低于乙成绩的平均分;
B.甲成绩的中位数高于乙成绩的中位数;
C.甲成绩的众数高于乙成绩的众数;
D.甲成绩的方差低于乙成绩的方差.
7、(4分)若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是( )
A.2B.﹣2C.±2D.任意实数
8、(4分)下列二次根式①,②,③,④,能与合并的是( )
A.①和②B.②和③C.①和④D.③和④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:=_______________.
10、(4分)一个数的平方等于这个数本身,这个数为_________.
11、(4分)对于实数c,d,min{c,d}表示c,d两数中较小的数,如min{3,﹣1}=﹣1.若关于x的函数y=min{2x2,a(x﹣t)2}(x≠0)的图象关于直线x=3对称,则a的取值范围是_____,对应的t值是______.
12、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
13、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:
则这组数据的中位数是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
15、(8分)先化简,再求值:,其中是方程的解.
16、(8分)如图,在平行四边形OABC中,已知点A、C两点的坐标为A (,),C (2,0).
(1)求点B的坐标.
(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形OABC的面积.
17、(10分)如图,矩形花坛面积是24平方米,两条邻边,的和是10米(),求边的长.
18、(10分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)
(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
(2)在(1)所画的平行四边形中任选-一个,求出其面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD中,,,将矩形折叠,使点B与点D重合,点A的对应点为,折痕EF的长为________.
20、(4分)如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为1,L2、L3的距离为2,则正方形的边长为__________.
21、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.
22、(4分)新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示. 根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么__________(填“李老师”或“王老师”)将被录用.
23、(4分)在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
25、(10分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?
26、(12分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于 D,
(1)直接写直线y=2x+2与坐标轴所围成的图形的面积
(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.
问:AP与PF有怎样的数量关系和位置关系?并说明理由;
(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程10.8(1+x)2=16.8,
故选C.
考点:由实际问题抽象出一元二次方程
2、D
【解析】
根据菱形的对角线互相垂直平分和勾股定理进行计算即可.
【详解】
∵菱形对角线互相垂直平分,且一条对角线长为6cm,
∴这条对角线的一半长3cm,
又∵菱形的边长为5cm,
∴由勾股定理得,另一条对角线的一半长4cm,
∴另一条对角线长8cm.
故选:D.
本题考查菱形的性质和勾股定理,熟记性质及定理是关键.
3、C
【解析】因为72+242=252;122+162=202;92+402=412;42+62≠82;(32)2+(42)2≠(52)2,所以能组成直角三角形的个数为3个.
故选C.
本题主要考查了勾股定理的逆定理,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,已知一个三角形三边的长,常用勾股定理的逆定理判断这个三角形是否是直角三角形.
4、A
【解析】
根据分式的混合运算法则进行计算即可得出正确选项。
【详解】
解:
=2
故选:A
本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.
5、D
【解析】
不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.
【详解】
解:∵a<b,
∴3a<3b,A选项正确;
a+5<b+5,B选项正确;
a-5<b-5,C选项正确;
-3a>-3b,D选项错误;
故选:D.
本题主要考查不等式的性质,主要考查不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
6、D
【解析】
通过计算甲、乙的平均数可对A进行判断;利用中位数的定义对B进行判断;利用众数的定义对C进行判断;根据方差公式计算出甲、乙的方差,则可对D进行判断.
【详解】
甲的平均数= (分),乙的平均数= =8 (分) ,所以A选项错误;
甲的中位数是8分,乙的中位数是9分,故B选项错误;
甲的众数是8分,乙的众数是10分,故C选项错误;
甲的方差=,乙的方差=,故D选项正确,
故选:D.
此题考查数据的统计计算,正确掌握平均数的计算公式,众数、中位数的计算方法,方差的计算公式是解题的关键.
7、B
【解析】
正比例函数的一般式y=kx,k≠0,所以使m2-4=0,m-2≠0即可得解.
【详解】
由正比例函数的定义可得:m2-4=0,且m-2≠0,
解得,m=-2;
故选B.
8、C
【解析】
先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.
【详解】
解:,, ,,其中、与是同类二次根式,能与合并;
故选:C.
本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.
详解:原式=.
点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.
10、0或1
【解析】
根据特殊数的平方的性质解答.
【详解】
解:平方等于这个数本身的数只有0,1.
故答案为:0或1.
此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.
11、a=2或a<0 6或2
【解析】
可令y1=2x2,y2=a(x-t)2可分两种情况:①当y1与y2关于x=2对称时,可求出相应的a值为2,t值为6;②由于y1=2x2恒大于零,此时若y2恒小于零时,a<0,可得y2对称轴为x=2,即可求出相应的t值.
【详解】
解:设y1=2x2,y2=a(x﹣t)2
①当y1与y2关于x=2对称时,可得a=2,t=6
②在y=min{y1,y2}(x≠0)中,y1与y2没重合部分,即无论x为何值,y=y2
即y2恒小于等于y1,那么由于y对x=2对称,也即y2对于x=2对称,得a<0,t=2.
综上所述,a=2或a<0,对应的t值为6或2
故答案为:a=2或a<0,6或2
本题考查的是二次函数的图象与几何变换,先根据题意求出a的值是解答此题的关键.
12、
【解析】
根据平行四边形的性质可得到答案.
【详解】
∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
13、27℃
【解析】
根据中位数的求解方法,先排列顺序,再求解.
【详解】
解:将这组数据按从小到大的顺序排列:24,25,26,26,28,28,29,29,
此组数据的个数是偶数个,所以这组数据的中位数是(26+28)÷2=27,
故答案为27℃.
本题考查了中位数的意义.先把数据按由小到大顺序排序:若数据个数为偶数,则取中间两数的平均数;若数据个数为奇数,则取中间的一个数.
三、解答题(本大题共5个小题,共48分)
14、1);
(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.
【解析】
试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;
(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x的取值范围,再根据y随着x的增大而增大,得出x的值.
试题解析:(1)因为购买大型客车x辆,所以购买中型客车辆.
.
(2)依题意得< x. 解得x >1.
∵,y随着x的增大而增大,x为整数,
∴ 当x=11时,购车费用最省,为22×11+800="1" 042(万元).
此时需购买大型客车11辆,中型客车9辆.
答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.
考点:一次函数的应用
15、.
【解析】
【分析】括号内先通分进行分式的加减运算,再进行分式的乘除运算,解方程求出x的值,然后选择使分式有意义的值代入代简后的结果进行计算即可得.
【详解】原式=÷
= •
=,
解方程(x+1)2=4得x1=1, x2=-3 ,
当a=1时,原分式无意义,
所以,当a=-3时,原式=.
【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
16、 (1)点B坐标是(3,);(2) A′(O, )、B′(2,)、C′(,0),O′(-,0);(3) 6.
【解析】
分析:(1)根据平行四边形的性质AB=OC=2,由此即可解决问题.
(2)根据向左平移纵坐标不变,横坐标减去即可.
(3)根据平行四边形的面积公式计算即可.
详解:(1)点B坐标是(3,);
(2)向左平移个单位长度后,各点的纵坐标不变,横坐标都减少,
所以A′(O, )、B′(2,)、C′(,0),O′(-,0).
(3)平行四边形的面积为2·=2()2=2×3=6.
点睛:本题考查四边形综合题、坐标与点的位置关系、平行四边形的性质等知识,解题的关键是熟练掌握平行四边形的性质,记住平行四边形的面积等于底乘高,属于中考常考题型.
17、4米
【解析】
根据矩形的面积和邻边和可以设的长是米,则的长是,列出方程即可解答
【详解】
解:设的长是米,则的长是,
解得:,.
当时,,
当时,不符合题意,舍去;
答:的长是4米.
此题考查矩形的性质,解题关键在于列出方程
18、(1)见解析;(2)见解析
【解析】
(1)根据平行四边形的性质即可得到结论;
(2)根据平行四边形的面积公式计算即可得到结论.
【详解】
解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
(2)菱形DBFG面积=
=
=12
或平行四边形面积=
=15
本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
过点F作FH⊥AD于H,先利用矩形的性质及轴对称的性质证明DE=DF=BF,在Rt△DCF中通过勾股定理求出DF的长,再求出HE的长,再在Rt△HFE中利用勾股定理即可求出EF的长.
【详解】
解:如图,过点F作FH⊥AD于H,
∵四边形ABCD为矩形,
∴BC∥AD,∠C=90°,DC=AB=4,四边形DCFH为矩形,
∴∠BFE=∠DEF,
由折叠可知,∠BFE=∠DFE,BF=DF,
∴∠DEF=∠DFE,
∴DE=DF=BF,
在Rt△DCF中
设DF=x,则CF=BC-BF=6-x,
∵DC2+CF2=DF2,
∴42+(6-x)2=x2,
解得,x=,
∴DE=DF=BF=,
∴CF=BC-BF=6-=,
∵四边形DCFH为矩形,
∴HF=CD=4,DH=CF=,
∴HE=DE-DH=,
∴在Rt△HFE中,
故答案为
本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够灵活运用矩形的性质及轴对称的性质.
20、
【解析】
如图,过D作于D,交于E,交于F,根据平行的性质可得,再由同角的余角相等可得,即可证明,从而可得,根据勾股定理即可求出AD的长度.
【详解】
如图,过D作于D,交于E,交于F
∵
∴
∴由同角的余角相等可得
∵
∴
∴
∴
故答案为:.
本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.
21、-2
【解析】
由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.
【详解】
解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,
解得:m=﹣2,
故答案为:﹣2.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.
22、李老师.
【解析】
利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.
【详解】
解:李老师总成绩为:90×+85×=87,
王老师的成绩为:95×+80×=86,
∵87>86,
∴李老师成绩较好,
故答案为:李老师.
考查加权平均数的计算方法,以及利用加权平均数对事件作出判断,理解权对平均数的影响.
23、或2
【解析】
四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠ BED=120°算出即可
【详解】
画出示意图,分别讨论A,E在同侧和异侧的情况,
∵四边形ABCD为菱形,∠A=60,BD=3,
∴△ ABD为边长为3等边三角形,则AO=,
∵∠ BED=120°,则∠ OBE=30°,可得OE=,
则AE=,
同理可得OE’=,则AE’=,
所以AE的长度为或
本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)①菱形,见解析;②.
【解析】
(1)根据两直线平行内错角相等及折叠特性判断;
(2)①根据已知矩形性质及第一问证得邻边相等判断;
②根据折叠特性设未知边,构造勾股定理列方程求解.
【详解】
(1)证明:如图1,根据折叠,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF,
∴△BDF是等腰三角形;
(2)①∵四边形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵DG∥BE
∴四边形BFDG是平行四边形,
∵DF=BF,
∴四边形BFDG是菱形;
②∵AB=6,AD=8,
∴BD=10.
∴OB= BD=5.
假设DF=BF=x,∴AF=AD−DF=8−x.
∴在直角△ABF中,AB+AF=BF,即6+(8−x) =x,
解得x= ,
即BF=,
∴FO=,
∴FG=2FO=
此题考查四边形综合题,解题关键在于利用勾股定理进行计算.
25、(1)1400元;(2)有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲1台,则购买电压锅1台.理由见解析;(3)购进电饭煲、电压锅各1台.
【解析】
(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;
(3)结合(2)中的数据进行计算.
【详解】
解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得
,
解得 ,
所以,20×(10-200)+10×(200-160)=1400(元).
答:橱具店在该买卖中赚了1400元;
(2)设购买电饭煲a台,则购买电压锅(50-a)台,依题意得
,
解得 22≤a≤1.
又∵a为正整数,
∴a可取23,24,1.
故有三种方案:①防购买电饭煲23台,则购买电压锅27台;
②购买电饭煲24台,则购买电压锅26台;
③购买电饭煲1台,则购买电压锅1台.
(3)设橱具店赚钱数额为W元,
当a=23时,W=23×(10-200)+27×(200-160)=2230;
当a=24时,W=24×(10-200)+26×(200-160)=2240;
当a=1时,W=1×(10-200)+1×(200-160)=210;
综上所述,当a=1时,W最大,此时购进电饭煲、电压锅各1台.
本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
26、(1)1;(1)AP=PF且AP⊥PF,理由见解析;(3)PD1+BG1=PG1,理由见解析
【解析】
(1)先根据一次函数解析式求出A,D的坐标,根据三角形的面积公式即可求解;
(1)过点A作AH⊥DB,先计算出AD=,根据正方形的性质得到BD=,AH=DH=BD=,由PG=,得到DP+BG=,则PH=BG,可证得Rt△APH≌Rt△PFG,即可得到AP=PF且AP⊥PF;
(3)把△AGB绕点A点逆时针旋转90°得到△AMD,可得∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,则∠MDP=90°,根据勾股定理有DP1+BG1=PM1,由∠PAG=45°,可得∠DAP+∠BAG=45°,即∠MAP=45°,易证得△AMP≌△AGP,得到MP=PG,即可DP1+BG1=PM1.
【详解】
(1)∵直线y=1x+1交x轴于A,交y轴于 D,
令x=0,解得y=1,∴D(0,1)
令y=0,解得x=-1,∴A(-1,0)
∴AO=1,DO=1,
∴直线y=1x+1与坐标轴所围成的图形△AOD=×1×1=1;
(1)AP=PF且AP⊥PF,理由如下:
过点A作AH⊥DB,如图,
∵A(-1,0),D(0,1)
∴AD===AB,
∵四边形ABCD是正方形
∴BD==,
∴AH=DH=BD=,
而PG=,
∴DP+BG=,
而DH=DP+PH=
∴PH=BG,
∵∠GBF=45°
∴BG=GF=HP
∴Rt△APH≌Rt△PFG,
∴AP=PF, ∠PAH=∠PFG
∴∠APH+∠GPF=90°即AP⊥PF;
(3)PD1+BG1=PG1,理由如下:
如图,把△AGB绕点A点逆时针旋转90°得到△AMD,连接MP,
∴∠MDA=∠ABG=45°,DM=BG, ∠MAD=∠BAG,AM=AG,
∴∠MDP=90°,
∴DP1+BG1=PM1,
又∵∠PAG=45°,
∴∠DAP+∠BAG=45°,
∴∠MAD+∠DAP =45°,即∠MAP=45°,
而AM=AG,
∴△AMP≌△AGP,
∴MP=PG,
∴PD1+BG1=PG1
此题主要考查一次函数与正方形的性质综合,解题的关键是熟知一次函数的图像与性质、正方形的性质、全等三角形的判定与性质.
题号
一
二
三
四
五
总分
得分
地区
合川
永川
江津
涪陵
丰都
梁平
云阳
黔江
温度(℃)
25
26
29
26
24
28
28
29
测试项目
测试成绩
李老师
王老师
笔试
90
95
面试
85
80
进价(元/台)
售价(元/台)
电饭煲
200
250
电压锅
160
200
2024年陕西省西安市铁一中学数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年陕西省西安市铁一中学数学九年级第一学期开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安市益新中学2022-2023学年七年级上学期数学期末试题: 这是一份陕西省西安市益新中学2022-2023学年七年级上学期数学期末试题,共8页。
陕西省西安市益新中学2023-2024学年数学九上期末学业水平测试试题含答案: 这是一份陕西省西安市益新中学2023-2024学年数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了函数y=与y=kx2﹣k等内容,欢迎下载使用。