2024年江西省南昌市心远中学九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形的边长是,一条对角线的长是,则矩形的面积是( )
A.B.C..D.
2、(4分)下列命题中,正确的是( )
A.平行四边形的对角线相等
B.矩形的对角线互相垂直
C.菱形的对角线互相垂直且平分
D.对角线相等的四边形是矩形
3、(4分)已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是( )
A.1<x<B.C.D.
4、(4分)下列表达式中是一次函数的是( )
A.B.C.D.
5、(4分)如图,在边长为的菱形中,为上一点,,连接,若,则的长为( )
A.B.C.D.
6、(4分)多项式2m+4与多项式m2+4m+4的公因式是( )
A.m+2B.m﹣2C.m+4D.m﹣4
7、(4分)某学校初、高六个年级共有名学生,为了了解其视力情况,现采用抽样调查,如果按的比例抽样,则样本容量是( )
A.B.C.D.
8、(4分)如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为( )
A.6B.8C.10D.12
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的方程-2=会产生增根,则k的值为________
10、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
11、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.
12、(4分)已知,那么的值为__________.
13、(4分)如果等腰直角三角形的一条腰长为1,则它底边的长=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数a的值为 ,所抽查的学生人数为 .
(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
15、(8分)化简分式:.
16、(8分)如图,等腰直角三角形 AEF 的顶点 E 在等腰直角三角形 ABC 的边 BC上.AB 的延长线交 EF 于 D 点,其中∠AEF=∠ABC=90°.
(1)求证:
(2)若 E 为 BC 的中点,求的值.
17、(10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图
所示:
(1)根据图像,直接写出y1、y2关于x的函数关系式;
(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
18、(10分)因式分解:
(1)36﹣x2
(2)ma2﹣2ma+m
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在函数y=中,自变量x的取值范围是_______.
20、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
21、(4分)如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是 .
22、(4分)将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.
23、(4分)已知实数满足,则以的值为两边长的等腰三角形的周长是_________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且,连接AE、AF、EF
(1)求证:
(2)若,,求的面积.
25、(10分)已知一次函数y=(3-k)x-2k2+18.
(1)当k为何值时,它的图象经过原点?
(2)当k为何值时,它的图象经过点(0,-2)?
(3)当k为何值时,它的图象平行于直线y=-x?
(4)当k为何值时,y随x增大而减小?
26、(12分)如图,在▱ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM∥DN.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.
【详解】
由题意及勾股定理得矩形另一条边为==4
所以矩形的面积=44=16.
故答案选C.
本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.
2、C
【解析】
根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.
【详解】
解:A、平行四边形的对角线互相平分,所以A选项错误;
B、矩形的对角线互相平分且相等,所以B选项错误;
C、菱形的对角线互相垂直且平分,所以C选项正确;
D、对角线相等的平行四边形是矩形,所以D选项错误.
故选:C.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.
3、B
【解析】
由三角形三条边的关系得1<x<5,由于该三角形是锐角三角形,再结合勾股定理求出由锐角三角形变为直角三角形的临界值.
【详解】
首先要能组成三角形,由三角形三条边的关系得 1<x<5;
下面求该三角形为直角三角形的边长情况(此为临界情况):
当3为斜边时,
由勾股定理,22+x2=32,
解得x= .
当x 为斜边时,由勾股定理,22+32=x2,
解得x=,
综上可知,当<x<时,原三角形为锐角三角形.
故选B.
本题考查了三角形三条边的关系和勾股定理,解题的是由勾股定理求出x的临界值,再结合三角形三条边的关系求出x的取值范围.
4、B
【解析】
根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答
【详解】
A. 是反比例函数,故本选项错误;
B. 符合一次函数的定义,故本选项正确;
C. 是二次函数,故本选项错误;
D. 等式中含有根号,故本选项错误.
故选B
此题考查一次函数的定义,解题关键在于掌握其定义
5、A
【解析】
在Rt△BCP中利用勾股定理求出PB,在Rt△ABP中利用勾股定理求出PA即可.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=10,AB∥CD
∵PD=4,
∴PC=6,
∵PB⊥CD,
∴PB⊥AB,
∴∠CPB=∠ABP=90°,
在Rt△PCB中,∵∠CPB=90°,PC=6,BC=10,
∴PB= =8,
在Rt△ABP中,∵∠ABP=90°,AB=10,PB=8,
∴PA= =
故选:A
此题考查菱形的性质,勾股定理,解题关键在于求出PB.
6、A
【解析】
根据公因式定义,对每个多项式整理然后即可选出有公因式的项.
【详解】
2m+4=2(m+2),
m2+4m+4=(m+2)2,
∴多项式2m+4与多项式m2+4m+4的公因式是(m+2),
故选:A.
本题考查了公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.
7、C
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:10×10%=1,
故样本容量是1.
故选:C.
考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
8、C
【解析】
根据角平分线的定义得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,等量代换得到∠EBD=∠EDB,求得BE=DE,于是得到结论.
【详解】
解:∵BD平分∠ABC,
∴∠EBD=∠CBD,
∵DE∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴BE=DE,
∵△AED的周长为16,
∴AB+AD=16,
∵AD=6,
∴AB=10,
故选:C.
本题考查了平行线的性质,角平分线的性质,等腰三角形的判定和性质,熟练掌握各定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
10、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
11、
【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
【详解】
解:设这个正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(3,−6),
∴−6=3k,
解得k=−2,
∴y=−2x.
故答案是:y=−2x.
此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
12、
【解析】
根据,可设a=3k,则b=2k,代入所求的式子即可求解.
【详解】
∵,
∴设a=3k,则b=2k,
则原式=.
故答案为:.
本题考查了比例的性质,根据,正确设出未知数是本题的关键.
13、
【解析】
根据等腰直角三角形两腰相等及勾股定理求解即可.
【详解】
解:∵等腰直角三角形的一腰长为1,则另一腰长也为1
∴由勾股定理知,底边的长为
故答案为:.
本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780
【解析】
(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;
(2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;
(3)根据众数,平均数的定义即可得到结论;
(4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.
【详解】
(1)a=1﹣20%﹣30%﹣5%=45%;
所抽查的学生人数为:3÷5%=60(人).
故答案为:45%,60;
(2)平均睡眠时间为8小时的人数为:60×30%=18(人);
(3)这部分学生的平均睡眠时间的众数是7人,
平均数7.2(小时);
(4)1200名睡眠不足(少于8小时)的学生数1200=780(人).
本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.
15、.
【解析】
根据分式的混合运算法则进行运算,最后化成最简分式即可.
【详解】
,
=,
=
=.
此题主要考查了分式的加减运算,分工的化简等知识点的理解和掌握,能熟练地进行有关分式的运算是解此题的关键.
16、(1)见解析;(2)
【解析】
(1)由△AEF、△ABC是等腰直角三角形,易证得△FAD∽△CAE,然后由相似三角形的对应边成比例,可得 ,又由等腰直角三角形的性质,可得AF= AE,即可证得;
(2)首先设BE=a,由射影定理,可求得DB的长,继而可求得DA的长,即可求得答案.
【详解】
(1)证明:∵△AEF、△ABC是等腰直角三角形,
∴∠EAF=∠BAC=45°,∠F=∠C=45°,
∴∠FAD=∠CAE,
∴△FAD∽△CAE,
∴,
∵∠AEF=90°,AE=EF,
∴AF=AE,
∴;
(2)设BE=a,
∵E为BC的中点,
∴EC=BE=a,AB=BC=2a,
∵∠AEF=∠ABC=90°,
∴BE =AB⋅DB,
∴DB= ,
∵DA=DB+AB,
∴DA= ,
∴= .
此题考查相似三角形的判定与性质,等腰直角三角形,解题关键在于证明△FAD∽△CAE
17、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km
【解析】
(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;
(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
【详解】
(1)设y1=k1x,由图可知,函数图象经过点(10,600),
∴10k1=600,
解得:k1=60,
∴y1=60x(0≤x≤10),
设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则
,
解得:
∴y2=-100x+600(0≤x≤6);
(2)由题意,得
60x=-100x+600
x=,
当0≤x<时,S=y2-y1=-160x+600;
当≤x<6时,S=y1-y2=160x-600;
当6≤x≤10时,S=60x;
即;
(3)由题意,得
①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,
解得x=,
此时,A加油站距离甲地:60×=150km,
②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,
解得x=5,此时,A加油站距离甲地:60×5=300km,
综上所述,A加油站到甲地距离为150km或300km.
18、(1)(6+x)(6﹣x);(1)m(a﹣1)1.
【解析】
1)原式利用平方差公式分解即可;
(1)原式提取m,再利用完全平方公式分解即可.
【详解】
(1)原式=(6+x)(6﹣x);
(1)原式=m(a1﹣1a+1)=m(a﹣1)1.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥﹣2且x≠0
【解析】
根据题意得x+2≥0且x≠0,即x≥-2且x≠0.
20、32
【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
【详解】
∵数据方差的计算公式是,
∴样本容量为8,平均数为4,
∴该组数据的总和为8×4=32,
故答案为:32
本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
21、6cm.
【解析】
试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.
故答案为6cm.
考点:相似三角形的判定与性质.
22、
【解析】
根据“左加右减”的法则求解即可.
【详解】
解:将正比例函数的图象向右平移2个单位,
得=,
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
23、19
【解析】
先根据非负数的性质求得x、y的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.
【详解】
根据题意得,x-3=0,y-8=0,
解得x=3,y=8,
①3是腰长时,三角形的三边分别为3、3、8,
∵3+3<8,
∴不能组成三角形,
②3是底边时,三角形的三边分别为3、8、8,
能组成三角形,周长=3+8+8=19,
所以,三角形的周长为19,
故答案为:19.
本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,二次根式的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析; (2)80.
【解析】
(1)根据SAS证明即可;
(2)根据勾股定理求得AE= ,再由旋转的性质得出,从而由面积公式得出答案.
【详解】
四边形ABCD是正方形,
,
而F是CB的延长线上的点,
,
在和中
,
;
(2) ,
,
在中,DE=4,AD=12,
,
可以由绕旋转中心 A点,按顺时针方向旋转90度得到,
,
的面积(平方单位).
本题主要考查正方形性质和全等三角形判定与性质及旋转性质,熟练掌握性质是解题关键.
25、 (1)见解析;(2) k=±;(1) k=4;(4) k>1.
【解析】
【分析】(1) 将点(0,0)代入解析式y=(1-k)x-2k2+18;(2)将点(0,-2)代入解析式y=(1-k)x-2k2+18;(1)由图像平行于直线y=-x,得两个函数的一次项系数相等,即1-k=-1;
(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0.
【详解】解:(1)∵一次函数的图像经过原点,
∴点(0,0)在一次函数的图像上,
将点(0,0)代入解析式得:0=-2k2+18,
解得:k=±1.
又∵y=(1-k)x-2k2+18是一次函数,
∴1-k≠0,
∴k≠1.
∴k=-1.
(2)∵图像经过点(0,-2),
∴点(0,-2)满足函数解析式,代入得:-2=-2k2+18,
解得:k=±.
(1)∵图像平行于直线y=-x,
∴两个函数的一次项系数相等,即1-k=-1.
解得k=4.
(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0,
即1-k<0,
解得k>1.
【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
26、证明见解析
【解析】
试题分析:由平行四边形的性质得出OA=OC,OB=OD,再证出OM=ON,由SAS证明△BOM≌△DON,得出对应角相等∠OBM=∠ODN,再由内错角相等,两直线平行,即可得出结论.
试题解析:证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AM=CN,∴OM=ON,
在△BOM和△DON中,
∴△BOM≌△DON(SAS),
∴∠OBM=∠ODN,
∴BM∥DN.
题号
一
二
三
四
五
总分
得分
2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024年江西南昌市心远中学度数学九年级第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江西省南昌市心远中学2023-2024学年九年级上学期月考数学试题(): 这是一份江西省南昌市心远中学2023-2024学年九年级上学期月考数学试题(),共5页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
江西省南昌市心远中学2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份江西省南昌市心远中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。