2024年江苏省宜兴市新芳中学数学九上开学学业质量监测试题【含答案】
展开这是一份2024年江苏省宜兴市新芳中学数学九上开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是( )
A.∠A=60˚B.DE=DFC.EF⊥BDD.BD 是∠EDF的平分线
2、(4分)下列各式不能用公式法分解因式的是( )
A.B.
C.D.
3、(4分)下列图象中,表示y是x的函数的是( )
A.B.C.D.
4、(4分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么请你估计该厂这20万件产品中合格产品约有( )
A.1万件B.18万件C.19万件D.20万件
5、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
方差分别是,,,.在本次射击测试中,成绩最
稳定的是( )
A.甲B.乙C.丙D.丁
6、(4分)下列事件为必然事件的是( )
A.某运动员投篮时连续3次全中B.抛掷一块石块,石块终将下落
C.今天购买一张彩票,中大奖D.明天我市主城区最高气温为38℃
7、(4分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )
A.0.1B.0.17C.0.33D.0.4
8、(4分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
A.2cmB.4cmC.6cmD.8cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.
10、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
11、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.
12、(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.
13、(4分)要使分式的值为1,则x应满足的条件是_____
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:
(1)画出△ABC绕点O逆时针旋转90∘后的△A BC;点B1的坐标为___;
(2)在(1)的旋转过程中,点B运动的路径长是___
(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.
15、(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.试判断四边形AFBE的形状,并说明理由.
16、(8分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元。
(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?
(2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。
17、(10分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.
18、(10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到永丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒,,.
(1)求A、B之间的路程;
(2)请判断此车是否超过了永丰路每小时54千米的限制速度?(参考数据:)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
20、(4分)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
21、(4分)在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.
22、(4分)已知x=2时,分式的值为零,则k=__________.
23、(4分)关于x的方程有增根,则m的值为_____
二、解答题(本大题共3个小题,共30分)
24、(8分)一组数据:1,1,2,5,x的平均数是1.
(1)求x的值;
(2)求这组数据的方差.
25、(10分)为了了解高峰时段37路公交车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:16,25,18,1,25,30,28,29,25,1.
(1)请求出这10个班次乘该路车人数的平均数、众数与中位数;
(2)如果37路公交车在高峰时段从总站共发出50个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?
26、(12分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先证明四边形BFDE是平行四边形,再根据菱形的判定定理逐项进行分析判断即可.
【详解】
由题意知:四边形ABCD是平行四边形,
∴∠ADC=∠ABC,∠A=∠C,AD=BC,AB=CD,ABCD
又∵DE,BF分别是∠ADC和∠ABC的平分线,
∴∠ADE=∠FBC,
在△ADE和△CBF中
∴△ADE≌△CBF(ASA)
∴AE=CF,DE=BF
又∵AB=CD,ABCD ,AE=CF
∴DF=BE,DFBE、
∴四边形BFDE是平行四边形.
A、∵AB//CD,
∴∠AED=∠EDC,
又∵∠ADE=∠EDC,
∴∠ADE=∠AED,
∴AD=AE,
又∵∠A=60°,
∴△ADE是等边三角形,
∴AD=AE=DE,
无法判断平行四边形BFDE是菱形.
B、∵DE=DF,
∴平行四边形BFDE是菱形.
C、∵EF⊥BD,
∴平行四边形BFDE是菱形.
D、∵BD 是∠EDF的平分线,
∴∠EDB=∠FDB,
又∵DF//BE,
∴∠FDB=∠EBD,
∴∠EDB=∠EBD,
∴ED=DB,
∴平行四边形BFDE是菱形.
故选A.
本题考查了平行四边形的性质,菱形的判定,正确掌握菱形的判定定理是解题的关键.
2、C
【解析】
根据公式法有平方差公式、完全平方公式,可得答案.
【详解】
A、x2-9,可用平方差公式,故A能用公式法分解因式;
B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;
C、-x2-y2不能用平方差公式分解因式,故C正确;
D、x2-1可用平方差公式,故D能用公式法分解因式;
故选C.
本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.
3、C
【解析】
函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.
【详解】
解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,
所以A. B. D错误.
故选C.
本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.
4、C
【解析】
抽取的100件进行质检,发现其中有5件不合格,那么合格的有95件,由此即可求出这类产品的合格率是95%,然后利用样本估计总体的思想,即可知道合格率是95%,即可求出该厂这20万件产品中合格品的件数.
【详解】
∵某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,
∴合格的有95件,
∴合格率为95÷100=95%,
∴估计该厂这20万件产品中合格品约为20×95%=19万件,
故选C.
此题主要考查了样本估计总体的思想,此题利用样本的合格率去估计总体的合格率.
5、C
【解析】
方差越小,成绩越稳定,据此判断即可.
【详解】
解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,
故选C
本题考查了方差的相关知识,属于基础题型,掌握判断的方法是解题的关键.
6、B
【解析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、某运动员投篮时连续3次全中,是随机事件;
B、抛掷一块石块,石块终将下落,是必然事件;
C、今天购买一张彩票,中大奖,是随机事件;
D、明天我市主城区最高气温为38℃,是随机事件;
故选择:B.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、D
【解析】
首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.
【详解】
解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,
∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.
故选:D.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
8、A
【解析】
由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
【详解】
根据平行四边形的性质得AD∥BC,
∴∠EDA=∠DEC,
又∵DE平分∠ADC,
∴∠EDC=∠EDA,
∴∠EDC=∠DEC,
∴CD=CE=AB=6,
即BE=BC﹣EC=8﹣6=1.
故选:A.
本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.
【详解】
解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,
所以朝上一面的点数不小于3的概率是=,
故答案为:.
此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.
10、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
11、y=-x
【解析】
直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.
【详解】
把点(-2,2)代入y=kx得
2=-2k,
k=-1,
所以正比例函数解析式为y=-x.
故答案为:y=-x.
本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
12、1.
【解析】
利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.
【详解】
设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
∴,
解得,
∴y=1x+1,
将点(a,10)代入解析式,则a=1;
故答案为:1.
此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.
13、x=-1.
【解析】
根据题意列出方程即可求出答案.
【详解】
由题意可知:=1,
∴x=-1,
经检验,x=-1是原方程的解.
故答案为:x=-1.
本题考查解分式方程,注意,别忘记检验,本题属于基础题型.
三、解答题(本大题共5个小题,共48分)
14、(1)图见解析,;(2);(3)图见解析,(2,3).
【解析】
(1)如图,画出△ABC绕原点O逆时针旋转90°的△A BC;
(2)如图,根据弧长公式 ,计算点B运动的路径长;画出△ABC后的△ABC;
(3)如图,画出△ABC关于原点O对称的△ABC.
【详解】
(1)如图所示:点B1的坐标为(3,−4);
故答案为:(3,−4)
(2)由勾股定理得:OB==5,
∴
故答案为: ;
(3)如图所示,点C2的坐标为(2,3)
故答案为:(2, 3).
此题考查作图-旋转变换,掌握作图法则是解题关键
15、四边形AFBE是菱形,理由见解析.
【解析】
由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF,由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
【详解】
解:四边形AFBE是菱形,理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEG=∠BFG,
∵EF垂直平分AB,
∴AG=BG,
在△AGE和△BGF中,
,
∴△AGE≌△BGF(AAS);∴AE=BF,
∵AD∥BC,
∴四边形AFBE是平行四边形,
又∵EF⊥AB,
∴四边形AFBE是菱形.
故答案为:四边形AFBE是菱形,理由见解析.
本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.
16、(1)1只A型节能灯的售价为5元,1只B型节能灯的售价为7元;(2)购买60只A型节能灯,20只B型节能灯最省钱,理由见解析
【解析】
(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价y元,根据题意列出方程组,求出方程组的解即可;
(2)设A型节能灯买了a只,则B型节能灯买了(80-a)只,共花费w元,根据题意列出不等式组,求出不等式组的解集即可.
【详解】
解(1)设1只A型节能灯的售价为x元,1只B型节能灯的售价为y元
由题意得:
解得:
答:1只A型节能灯的售价为5元,1只B型节能灯的售价为7元
(2)设购买A型节能灯a个,则购买B型节能灯(80-a)个,总费用为w元
由题意得:a≤3(80-a)
解得a≤60
又∵w=5a+7(80-a)=-2a+560
∴w随a的增大而减小
∴当a取最大值60时,w有最小值
w=-2×60+560=440
即购买60只A型节能灯,20只B型节能灯最省钱
本题考查了解二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组或不等式组是解此题的关键.
17、证明见解析
【解析】
由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED=90°,从而证出AF⊥DE.
【详解】
解:∵四边形ABCD为正方形,
∴DA=AB,∠DAE=∠ABF=90°,
又∵AE=BF,
∴△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠FAE+∠AED=90°,
∴∠AGE=90°,
∴AF⊥DE.
本题考查正方形的性质;全等三角形的判定与性质.
18、(1)A、B之间的路程为73米;(2)此车超过了永丰路的限制速度.
【解析】
(1)首先根据题意,得出,,然后根据,,可得出OB和OA,即可得出AB的距离;
(2)由(1)中结论,可求出此车的速度,即可判定超过该路的限制速度.
【详解】
(1)根据题意,得
,
∵,
∴,
∴
故A、B之间的路程为73米;
(2)根据题意,得
4秒=小时,73米=0.073千米
此车的行驶速度为
千米/小时
千米/小时>54千米/小时
故此车超过了限制速度.
此题主要考查直角三角形与实际问题的综合应用,熟练掌握,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或2
【解析】
当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。
【详解】
如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。
易证△BDH是等边三角形,DH=BD, ∠FDH=∠EDB ,DF=DE
∴△FDH≌△EDB
∴FH=BE,∠FHD=∠B=60°
在等边△BDH中∠DHB=60°
∴∠CHF=60°
∴MH=MH,∠CHM=∠MHD=60°,DH=CH,
∴△CHM≌△DHM
∴CM=DM,
∵ CM=DM,CH=BH
∴ MH//BD,
∵CD⊥AB
∴MH⊥CD
∴∠CMF=90°
∴
∴
∴
BE==1
同理可证,当DF在CD左侧时
BE==2
综上所诉,BE=1或2
灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。
20、电影票的售价 电影票的张数,票房收入.
【解析】
根据常量,变量的定义进行填空即可.
【详解】
解:常量是电影票的售价,变量是电影票的张数,票房收入,
故答案为:电影票的售价;电影票的张数,票房收入.
本题考查了常量和变量,掌握常量和变量的定义是解题的关键.
21、丙
【解析】
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
因为=0.56,=0.60,=0.45,=0.50,
所以<<<,由此可得成绩最稳定的为丙.
故答案为:丙.
此题考查方差,解题关键在于掌握其定义.
22、-6
【解析】
由题意得:6+k=0,解得:k=-6.
故答案:-6.
【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.
23、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x−3),得2−x−m=2(x−3)
∵原方程增根为x=3,
∴把x=3代入整式方程,得2−3−m=0,
解得m=−1.
故答案为:−1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
二、解答题(本大题共3个小题,共30分)
24、(1)x=4;(2)2.
【解析】
(1)根据算术平均数定义列出关于x的方程,解之可得x的值;
(2)根据方差计算公式计算可得.
【详解】
解:(1)根据题意知=1,
解得:x=4;
(2)方差为×[(1﹣1)2+(1﹣1)2+(2﹣1)2+(5﹣1)2+(4﹣1)2]=2.
考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
25、解:(1)平均数是25人,众数是25人,中位数是26人;(2)1250 人.
【解析】
(1)根据平均、众数和中位数的概念分别求解即可;
(2)用平均数乘以发车班次就是乘客的总人数.
【详解】
解:(1)平均数=(16+25+18+1+25+30+28+29+25+1)=25(人),
这组数据按从小到大的顺序排列为:16,18,25,25,25,1,1,28,29,30,
中位数为:;
众数为:25;
(2)50×25=1250(人);
答:在高峰时段从总站乘该路车出行的乘客共有1250人.
本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.
26、DE=BF,DE∥BF.
【解析】
由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.
【详解】
解:DE∥BF DE=BF
.理由如下:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAC=∠ACB,且AE=CF,AD=BC,
∴△ADE≌△CBF(SAS),
∴DE=BF,∠AED=∠BFC,
∴∠DEC=∠AFB,
∴DE∥BF.
∴DE=BF,DE∥BF.
本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年江苏省无锡市阳山中学数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省苏州市新草桥中学数学九上开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河北省石家庄精英中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。