2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是( )
A.y=﹣3x+2B.y=2x+1C.y=5xD.y=
2、(4分)已知点在第二象限,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)若n为任意整数,(n+11)2-n2的值总可以被k整除,则k等于( )
A.11 B.22 C.11或22 D.11的倍数
4、(4分)在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是( )
A.(2,3) B.(-2,3) C.(-2,-3) D.(-3,2)
5、(4分)把分式中的x和y都扩大为原来的5倍,那么这个分式的值( )
A.扩大为原来的5倍B.不变
C.缩小到原来的D.扩大为原来的倍
6、(4分)下列计算正确的是
A.B.
C.D.
7、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
8、(4分)不等式的解集是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)_______
10、(4分)在函数中,自变量的取值范围是__________.
11、(4分)如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.
12、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
13、(4分)如图,已知菱形的面积为24,正方形的面积为18,则菱形的边长是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
15、(8分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,
(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
①如图1,求证:BE=BF=3;
②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
16、(8分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.
(1)求直线y=kx+b的表达式;
(2)当x取何值时,y>1.
17、(10分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:
(1)水蜜桃进价为每箱多少元?
(2)乙超市获利多少元?哪种销售方式更合算?
18、(10分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛. 现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)分别求表格中、、的值.
(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,则代数式________.
20、(4分)如果代数式有意义,那么字母x的取值范围是_____.
21、(4分)一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.
22、(4分)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.
23、(4分)如图,直线经过点,则不等式的解集为________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.
(1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.
(2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.
(3)在图2,当,时,求的面积.
25、(10分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.
(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.
(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.
(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.
26、(12分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一次函数和反比函数的增减性,即可判断.
【详解】
在y=﹣3x+2中,y随x的增大而减小,∴对于任意实数x1,x2,当x1>x2时,满足y1<y2,故选项A正确,
在y=2x+1中,y随x的增大而增大,∴对于任意实数x1,x2,当x1>x2时,满足y1>y2,故选项B错误,
在y=5x中,y随x的增大而增大,∴对于任意实数x1,x2,当x1>x2时,满足y1>y2,故选项C错误,
在y=﹣中,在每个象限内,y随x的增大而增大,当x1>x2>0时,满足y1>y2,故选项D错误,
故选:A.
本题重点考查了函数的增减性,一次函数的增减性由k来决定,k>0,y随x增大而增大,反之增大而减小,反比例函数的增减性也是由k来决定,在每一个象限内,当k>0时,y随x增大而减小,反之,则增大而增大,因此熟练掌握相关的知识点是解题的关键.
2、D
【解析】
依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.
【详解】
∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.
故选D.
本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
3、D
【解析】
试题分析:根据平方差公式分解因式即可判断。
∵(n+11)2-n2=(n+11+n)(n+11-n)=11(2n+11),
∴(n+11)2-n2的值总可以被11的倍数整除,
故选D.
考点:本题考查的是因式分解的简单应用
点评:解答本题的关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b).
4、B
【解析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.
【详解】
根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).
故选B.
关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.
5、B
【解析】
先将x和y都扩大为原来的5倍,然后再化简,可得答案.
【详解】
解:分式中的x和y都扩大为原来的5倍,得,
所以这个分式的值不变,
故选:B.
此题考查了分式的基本性质,关键是熟悉分式的运算法则.
6、D
【解析】
根据二次根式的运算法则逐项计算即可判断.
【详解】
解:A、和不是同类二次根式,不能合并,故错误;
B、=2,故错误;
C、=,故错误;
D、==2,故正确.
故选D.
本题考查了二次根式的四则运算.
7、B
【解析】
在平均数相同时
方差越小则数据波动越小说明数据越稳定,
8、D
【解析】
两边同时乘以3,即可得到答案.
【详解】
解:,解得:;
故选择:D.
本题考查了解不等式,解题的关键是掌握不等式的解法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2019
【解析】
直接利用平方差公式即可解答
【详解】
=2019
此题考查平方差公式,解题关键在于掌握运算法则
10、x≠2
【解析】
根据分式有意义的条件进行求解即可.
【详解】
由题意得,2x-4≠0,
解得:x≠2,
故答案为:x≠2.
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
11、
【解析】
根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.
【详解】
根据题意可得当时,EF的值最小
,AD=AB=
EF=
本题主要考查最短直线问题,关键在于判断当时,EF的值最小.
12、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵S甲2=0.18,S乙2=0.32,
∴S甲2<S乙2,
∴身高较整齐的球队是甲;
故答案为:甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、1
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:如图,连接AC、BD,相交于点O,
∵正方形AECF的面积为18,
∴AC=,
∴AO=3,
∵菱形ABCD的面积为24,
∴BD=,
∴BO=4,
∴在Rt△AOB中,.
故答案为:1.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
三、解答题(本大题共5个小题,共48分)
14、(1)饮用水和蔬菜分别为1件和2件
(2)设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
【解析】
试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
(3)分别计算出相应方案,比较即可.
试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
x+(x﹣80)=320,
解这个方程,得x=1.
∴x﹣80=2.
答:饮用水和蔬菜分别为1件和2件;
(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:
,
解这个不等式组,得2≤m≤3.
∵m为正整数,
∴m=2或3或3,安排甲、乙两种货车时有3种方案.
设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
(3)3种方案的运费分别为:
①2×300+6×360=2960(元);
②3×300+5×360=3000(元);
③3×300+3×360=3030(元);
∴方案①运费最少,最少运费是2960元.
答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
15、(1)①详见解析;②12;(2).
【解析】
(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
【详解】
解:(1)①∵四边形ABCD是正方形,
∴AB=BC=AD=6,∠BAD=∠BCD=90°,
∵点E是中点,
∴AE=AD=3,
在Rt△ABE中,根据勾股定理得,BE==3,
在△BAE和△BCF中,
∴△BAE≌△BCF(SAS),
∴BE=BF,
∴BE=BF=3;
②如图2,连接BD,
在Rt△ABC中,AC=AB=6,
∴BD=6,
∵四边形ABCD是正方形,
∴AD∥BC,
∴△AEM∽△CMB,
∴,
∴,
∴AM=AC=2,
同理:CN=2,
∴MN=AC﹣AM﹣CN=2,
由①知,△ABE≌△CBF,
∴∠ABE=∠CBF,
∵AB=BC,∠BAM=∠BCN=45°,
∴△ABM≌△CBN,
∴BM=BN,
∵AC是正方形ABCD的对角线,
∴AB=AD,∠BAM=∠DAM=45°,
∵AM=AM,
∴△BAM≌△DAM,
∴BM=DM,
同理:BN=DN,
∴BM=DM=DN=BN,
∴四边形BMDN是菱形,
∴S四边形BMDN=BD×MN=×6×2=12;
(2)如图3,设DH=a,
连接BD,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵DH⊥BH,
∴∠BHD=90°,
∴点B,C,D,H四点共圆,
∴∠DBH=∠DCH=22.5°,
在BH上取一点G,使BG=DG,
∴∠DGH=2∠DBH=45°,
∴∠HDG=45°=∠HGD,
∴HG=HD=a,
在Rt△DHG中,DG=HD=a,
∴BG=a,
∴BH=BG+HG=A+A=(+1)a,
∴.
故答案为.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.
16、(1)y=x+11;(2)x>﹣20时,y>1.
【解析】
(1)利用待定系数法求一次函数解析式;
(2)解不等式x+11>1即可.
【详解】
(1)根据题意得,解得,
所以直线解析式为y=x+11;
(2)解不等式x+11>1得x>﹣20,
即x>﹣20时,y>1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
17、 (1)水蜜桃进价为每箱100元; (2)乙超市获利为33000元,甲种销售方式获利多.
【解析】
(1)设水蜜桃进价为每箱x元,根据利润=(售价-进价)×箱数,利用甲超市获利42000元列分式方程即可求出x的值,检验即可得答案;(2)根据进价可得甲超市的售价,即可求出乙超市的售价,根据进价和总价可求出购进箱数,即可求出乙超市的利润,与42000元比较即可得答案.
【详解】
设水蜜桃进价为每箱x元,
∴,
解得:x=100,
经检验x=100是分式方程的解,且符合题意,
则水蜜桃进价为每箱100元;
(2)∵挑出优质大个的水蜜桃以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.
∴甲超市水蜜桃的售价是200元/箱和110元/箱,
∴乙超市售价为,
∵甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,
∴乙超市购进水蜜桃:60000÷100=600(箱)
∴乙超市获利为600×(155-100)=33000(元),
∵42000元>33000元,
∴甲种销售方式获利多.
本题考查分式方程的应用,根据题意找出等量关系列出方程是解题关键.
18、 (1)a=1,b=1,c=8;(2)甲,乙
【解析】
(1)首先根据统计图中的信息,可得出乙的平均成绩a和众数c;根据统计图,将甲的成绩从小到大重新排列,即可得出中位数b;
(2)根据甲乙的中位数、众数和方差,可以判定参赛情况.
【详解】
(1)a=×(3+6+4+8×3+1×2+9+10)=1.
∵甲射击的成绩从小到大从新排列为:5、6、6、1、1、1、1、8、8、9,
∴b=1.c=8.
(2)甲的方差较大,说明甲的成绩波动较大,而且甲的成绩众数为1,故如果其他参赛选手的射击成绩都在1环左右,应该选甲参赛更适合;乙的中位数和众数都接近8,故如果其他参赛选手的射击成绩都在8环左右,应该选乙参赛更适合.
此题主要考查根据统计图获取信息,熟练掌握,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据二次根式有意义的条件得到a≥1,根据绝对值的性质把原式化简计算即可.
【详解】
由题意得,a-1≥0,
解得,a≥1,
则已知等式可化为:a-2018+=a,
整理得,=2018,
解得,a-1=20182,
∴a-20182=1,
故答案是:1.
考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
20、x⩾−2且x≠1
【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
【详解】
∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.
本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
21、1.1,2,2.1.
【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.
详解:1,3,1,1,2,a的众数是a,
∴a=1或2或3或1,
将数据从小到大排列分别为:1,1,1,2,3,1,
1,1,2,2,3,1,
1,1,2,3,3,1,
1,1,2,3,1,1.
故中位数分别为:1.1,2,2.1.
故答案为:1.1,2,2.1.
点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.
22、150, 60
【解析】
分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.
详解:由题意可知小亮的路径是一个正多边形,
∵每个外角等于30°,
∴每个内角等于150°.
∵正多边形的外角和为360°,
∴正多边形的边数为360°÷30°=12(边).
∴小亮走的周长为5×12=60.
点睛:本题主要考查了多边形的内角与外角,牢记多边形的内角与外角概念是解题关键.
23、.
【解析】
根据一次函数与一元一次不等式的关系进行解答即可.
【详解】
解:∵直线y=kx+b(k≠0)经过一、三象限且与y轴交于正半轴,
∴k>0,b>0,
∴y随x的增大而增大,y随x的减小而减小,
∵直线y=kx+b(k≠0)经过点P(-1,2),
∴当y<2,即kx+b<2时,x<-1.
故答案为x<-1.
本题考查了一次函数与一元一次不等式的联系.
二、解答题(本大题共3个小题,共30分)
24、(1);等腰直角.(2)详见解析;(3)
【解析】
(1)连接AF,由正方形的性质及折叠的性质已知,由全等可知,CF=CE,结合可确定是等腰直角三角形;(2)连接AF,由正方形的性质及折叠的性质已知,即证;(3)设,依据题意及(2)的结论用含x的式子确定出的三边长,根据勾股定理求出x的值,即可求面积.
【详解】
解:(1)连接,
∵四边形是正方形,∴,.
由翻折可知,.
∵,∴.…
∴.
又平分
∴AC垂直平分EF
∴
∴是等腰直角三角形.
故答案为:;等腰直角.
(2)连接,
∵四边形是正方形的对角线,∴,.
由翻折可知,.
∵,∴.…
∴.…
(3)设,则,.
在中,,即.
解得,即的长为.
∴;…
∴.…
本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.
25、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.
【解析】
(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到
DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化. EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′- BE=CF- BE。
【详解】
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠ACB=60°.
∵DB=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°.
∴∠DBE=∠DBC+∠ABC=90°,
∠DCF=∠DCB+∠ACB=90°.
∵EF∥BC,∴∠AEF=∠ABC=60°,
∠AFE=∠ACB=60°.∴AE=AF.
∴BE=AB-AE=AC-AF=CF.
又∵DB=DC,∠DBE=∠DCF=90°,
∴△BDE≌△CDF.
∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.
∴BE=DE=DF=CF.
∵∠EDF=60°,∴△DEF是等边三角形,
即DE=DF=EF.
∴BE+CF=DE+DF=EF,
即EF=BE+CF.
(2)解:结论仍然成立.
理由如下:如图,在射线AB上取点F′,
使BF′=CF,连接DF′.
由(1)得∠DBE=∠DCF=90°,
则∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠CDF=60°.
∴∠EDB+∠BDF′=∠EDF′=60°.
∴∠EDF′=∠EDF.
又∵DE=DE,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BE+BF′=BE+CF.
(3)解:结论发生变化.EF=CF-BE.
理由:在射线AB上取点F′,
使BF′=CF,连接DF′.
由(1)得∠DBA=∠DCF=90°,
则∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠FDB+∠CDF=60°.
∴∠FDB+∠BDF′=∠FDF′=120°.
∴∠EDF′=∠EDF=60°.
又∵DE=DE,DF=DF′,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BF′- BE=CF- BE。
此题考查等边三角形的性质及全等三角形的判定及性质;利用等边三角形的性质去探究全等三角形,利用全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.
26、BC边上的高AD=.
【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
【详解】
作AD⊥BC于D,
由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
解得,CD=1,
则BC边上的高AD=.
考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
题号
一
二
三
四
五
总分
得分
选 手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
平均成绩(环)
中位数(环)
众数(环)
方差()
甲
7
7
1. 2
乙
7. 5
4. 2
2024年安徽省宣城市宣州区狸桥中学九上数学开学教学质量检测试题【含答案】: 这是一份2024年安徽省宣城市宣州区狸桥中学九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省无锡市和桥区、张渚区九上数学期末达标测试试题含答案: 这是一份2023-2024学年江苏省无锡市和桥区、张渚区九上数学期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
江苏省无锡市和桥区、张渚区2023-2024学年八上数学期末检测模拟试题含答案: 这是一份江苏省无锡市和桥区、张渚区2023-2024学年八上数学期末检测模拟试题含答案,共6页。试卷主要包含了下列六个数,计算 的结果是,下列各式中正确的是,直线,如果,那么代数式的值是.等内容,欢迎下载使用。