|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】01
    2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】02
    2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】

    展开
    这是一份2024年江苏省无锡市和桥区、张渚区九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是( )
    A.y=﹣3x+2B.y=2x+1C.y=5xD.y=
    2、(4分)已知点在第二象限,则点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3、(4分)若n为任意整数,(n+11)2-n2的值总可以被k整除,则k等于( )
    A.11 B.22 C.11或22 D.11的倍数
    4、(4分)在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是( )
    A.(2,3) B.(-2,3) C.(-2,-3) D.(-3,2)
    5、(4分)把分式中的x和y都扩大为原来的5倍,那么这个分式的值( )
    A.扩大为原来的5倍B.不变
    C.缩小到原来的D.扩大为原来的倍
    6、(4分)下列计算正确的是
    A.B.
    C.D.
    7、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
    则这四人中成绩发挥最稳定的是( )
    A.甲B.乙C.丙D.丁
    8、(4分)不等式的解集是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)_______
    10、(4分)在函数中,自变量的取值范围是__________.
    11、(4分)如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.
    12、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
    13、(4分)如图,已知菱形的面积为24,正方形的面积为18,则菱形的边长是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
    (1)求饮用水和蔬菜各有多少件?
    (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
    (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
    15、(8分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,
    (1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
    ①如图1,求证:BE=BF=3;
    ②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
    (2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
    16、(8分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.
    (1)求直线y=kx+b的表达式;
    (2)当x取何值时,y>1.
    17、(10分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:
    (1)水蜜桃进价为每箱多少元?
    (2)乙超市获利多少元?哪种销售方式更合算?
    18、(10分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛. 现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:
    根据以上信息,整理分析数据如下:
    (1)分别求表格中、、的值.
    (2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知,则代数式________.
    20、(4分)如果代数式有意义,那么字母x的取值范围是_____.
    21、(4分)一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.
    22、(4分)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.
    23、(4分)如图,直线经过点,则不等式的解集为________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.
    (1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.
    (2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.
    (3)在图2,当,时,求的面积.

    25、(10分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.
    (1)当EF∥BC时,如图①所示,求证:EF=BE+CF.
    (2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.
    (3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.
    26、(12分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据一次函数和反比函数的增减性,即可判断.
    【详解】
    在y=﹣3x+2中,y随x的增大而减小,∴对于任意实数x1,x2,当x1>x2时,满足y1<y2,故选项A正确,
    在y=2x+1中,y随x的增大而增大,∴对于任意实数x1,x2,当x1>x2时,满足y1>y2,故选项B错误,
    在y=5x中,y随x的增大而增大,∴对于任意实数x1,x2,当x1>x2时,满足y1>y2,故选项C错误,
    在y=﹣中,在每个象限内,y随x的增大而增大,当x1>x2>0时,满足y1>y2,故选项D错误,
    故选:A.
    本题重点考查了函数的增减性,一次函数的增减性由k来决定,k>0,y随x增大而增大,反之增大而减小,反比例函数的增减性也是由k来决定,在每一个象限内,当k>0时,y随x增大而减小,反之,则增大而增大,因此熟练掌握相关的知识点是解题的关键.
    2、D
    【解析】
    依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.
    【详解】
    ∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.
    故选D.
    本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    3、D
    【解析】
    试题分析:根据平方差公式分解因式即可判断。
    ∵(n+11)2-n2=(n+11+n)(n+11-n)=11(2n+11),
    ∴(n+11)2-n2的值总可以被11的倍数整除,
    故选D.
    考点:本题考查的是因式分解的简单应用
    点评:解答本题的关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b).
    4、B
    【解析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.
    【详解】
    根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).
    故选B.
    关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.
    5、B
    【解析】
    先将x和y都扩大为原来的5倍,然后再化简,可得答案.
    【详解】
    解:分式中的x和y都扩大为原来的5倍,得,
    所以这个分式的值不变,
    故选:B.
    此题考查了分式的基本性质,关键是熟悉分式的运算法则.
    6、D
    【解析】
    根据二次根式的运算法则逐项计算即可判断.
    【详解】
    解:A、和不是同类二次根式,不能合并,故错误;
    B、=2,故错误;
    C、=,故错误;
    D、==2,故正确.
    故选D.
    本题考查了二次根式的四则运算.
    7、B
    【解析】
    在平均数相同时
    方差越小则数据波动越小说明数据越稳定,
    8、D
    【解析】
    两边同时乘以3,即可得到答案.
    【详解】
    解:,解得:;
    故选择:D.
    本题考查了解不等式,解题的关键是掌握不等式的解法.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2019
    【解析】
    直接利用平方差公式即可解答
    【详解】
    =2019
    此题考查平方差公式,解题关键在于掌握运算法则
    10、x≠2
    【解析】
    根据分式有意义的条件进行求解即可.
    【详解】
    由题意得,2x-4≠0,
    解得:x≠2,
    故答案为:x≠2.
    本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    11、
    【解析】
    根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.
    【详解】
    根据题意可得当时,EF的值最小

    ,AD=AB=
    EF=
    本题主要考查最短直线问题,关键在于判断当时,EF的值最小.
    12、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    解:∵S甲2=0.18,S乙2=0.32,
    ∴S甲2<S乙2,
    ∴身高较整齐的球队是甲;
    故答案为:甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    13、1
    【解析】
    根据正方形的面积可用对角线进行计算解答即可.
    【详解】
    解:如图,连接AC、BD,相交于点O,
    ∵正方形AECF的面积为18,
    ∴AC=,
    ∴AO=3,
    ∵菱形ABCD的面积为24,
    ∴BD=,
    ∴BO=4,
    ∴在Rt△AOB中,.
    故答案为:1.
    此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
    三、解答题(本大题共5个小题,共48分)
    14、(1)饮用水和蔬菜分别为1件和2件
    (2)设计方案分别为:
    ①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
    (3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
    【解析】
    试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
    (2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
    (3)分别计算出相应方案,比较即可.
    试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
    x+(x﹣80)=320,
    解这个方程,得x=1.
    ∴x﹣80=2.
    答:饮用水和蔬菜分别为1件和2件;
    (2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:

    解这个不等式组,得2≤m≤3.
    ∵m为正整数,
    ∴m=2或3或3,安排甲、乙两种货车时有3种方案.
    设计方案分别为:
    ①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
    (3)3种方案的运费分别为:
    ①2×300+6×360=2960(元);
    ②3×300+5×360=3000(元);
    ③3×300+3×360=3030(元);
    ∴方案①运费最少,最少运费是2960元.
    答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
    考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
    15、(1)①详见解析;②12;(2).
    【解析】
    (1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
    ②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
    (2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
    【详解】
    解:(1)①∵四边形ABCD是正方形,
    ∴AB=BC=AD=6,∠BAD=∠BCD=90°,
    ∵点E是中点,
    ∴AE=AD=3,
    在Rt△ABE中,根据勾股定理得,BE==3,
    在△BAE和△BCF中,
    ∴△BAE≌△BCF(SAS),
    ∴BE=BF,
    ∴BE=BF=3;
    ②如图2,连接BD,
    在Rt△ABC中,AC=AB=6,
    ∴BD=6,
    ∵四边形ABCD是正方形,
    ∴AD∥BC,
    ∴△AEM∽△CMB,
    ∴,
    ∴,
    ∴AM=AC=2,
    同理:CN=2,
    ∴MN=AC﹣AM﹣CN=2,
    由①知,△ABE≌△CBF,
    ∴∠ABE=∠CBF,
    ∵AB=BC,∠BAM=∠BCN=45°,
    ∴△ABM≌△CBN,
    ∴BM=BN,
    ∵AC是正方形ABCD的对角线,
    ∴AB=AD,∠BAM=∠DAM=45°,
    ∵AM=AM,
    ∴△BAM≌△DAM,
    ∴BM=DM,
    同理:BN=DN,
    ∴BM=DM=DN=BN,
    ∴四边形BMDN是菱形,
    ∴S四边形BMDN=BD×MN=×6×2=12;
    (2)如图3,设DH=a,
    连接BD,
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,
    ∵DH⊥BH,
    ∴∠BHD=90°,
    ∴点B,C,D,H四点共圆,
    ∴∠DBH=∠DCH=22.5°,
    在BH上取一点G,使BG=DG,
    ∴∠DGH=2∠DBH=45°,
    ∴∠HDG=45°=∠HGD,
    ∴HG=HD=a,
    在Rt△DHG中,DG=HD=a,
    ∴BG=a,
    ∴BH=BG+HG=A+A=(+1)a,
    ∴.
    故答案为.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.
    16、(1)y=x+11;(2)x>﹣20时,y>1.
    【解析】
    (1)利用待定系数法求一次函数解析式;
    (2)解不等式x+11>1即可.
    【详解】
    (1)根据题意得,解得,
    所以直线解析式为y=x+11;
    (2)解不等式x+11>1得x>﹣20,
    即x>﹣20时,y>1.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
    17、 (1)水蜜桃进价为每箱100元; (2)乙超市获利为33000元,甲种销售方式获利多.
    【解析】
    (1)设水蜜桃进价为每箱x元,根据利润=(售价-进价)×箱数,利用甲超市获利42000元列分式方程即可求出x的值,检验即可得答案;(2)根据进价可得甲超市的售价,即可求出乙超市的售价,根据进价和总价可求出购进箱数,即可求出乙超市的利润,与42000元比较即可得答案.
    【详解】
    设水蜜桃进价为每箱x元,
    ∴,
    解得:x=100,
    经检验x=100是分式方程的解,且符合题意,
    则水蜜桃进价为每箱100元;
    (2)∵挑出优质大个的水蜜桃以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.
    ∴甲超市水蜜桃的售价是200元/箱和110元/箱,
    ∴乙超市售价为,
    ∵甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,
    ∴乙超市购进水蜜桃:60000÷100=600(箱)
    ∴乙超市获利为600×(155-100)=33000(元),
    ∵42000元>33000元,
    ∴甲种销售方式获利多.
    本题考查分式方程的应用,根据题意找出等量关系列出方程是解题关键.
    18、 (1)a=1,b=1,c=8;(2)甲,乙
    【解析】
    (1)首先根据统计图中的信息,可得出乙的平均成绩a和众数c;根据统计图,将甲的成绩从小到大重新排列,即可得出中位数b;
    (2)根据甲乙的中位数、众数和方差,可以判定参赛情况.
    【详解】
    (1)a=×(3+6+4+8×3+1×2+9+10)=1.
    ∵甲射击的成绩从小到大从新排列为:5、6、6、1、1、1、1、8、8、9,
    ∴b=1.c=8.
    (2)甲的方差较大,说明甲的成绩波动较大,而且甲的成绩众数为1,故如果其他参赛选手的射击成绩都在1环左右,应该选甲参赛更适合;乙的中位数和众数都接近8,故如果其他参赛选手的射击成绩都在8环左右,应该选乙参赛更适合.
    此题主要考查根据统计图获取信息,熟练掌握,即可解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据二次根式有意义的条件得到a≥1,根据绝对值的性质把原式化简计算即可.
    【详解】
    由题意得,a-1≥0,
    解得,a≥1,
    则已知等式可化为:a-2018+=a,
    整理得,=2018,
    解得,a-1=20182,
    ∴a-20182=1,
    故答案是:1.
    考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
    20、x⩾−2且x≠1
    【解析】
    先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
    【详解】
    ∵代数式有意义,
    ∴,
    解得x⩾−2且x≠1.
    故答案为:x⩾−2且x≠1.
    本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
    21、1.1,2,2.1.
    【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.
    详解:1,3,1,1,2,a的众数是a,
    ∴a=1或2或3或1,
    将数据从小到大排列分别为:1,1,1,2,3,1,
    1,1,2,2,3,1,
    1,1,2,3,3,1,
    1,1,2,3,1,1.
    故中位数分别为:1.1,2,2.1.
    故答案为:1.1,2,2.1.
    点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.
    22、150, 60
    【解析】
    分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.
    详解:由题意可知小亮的路径是一个正多边形,
    ∵每个外角等于30°,
    ∴每个内角等于150°.
    ∵正多边形的外角和为360°,
    ∴正多边形的边数为360°÷30°=12(边).
    ∴小亮走的周长为5×12=60.
    点睛:本题主要考查了多边形的内角与外角,牢记多边形的内角与外角概念是解题关键.
    23、.
    【解析】
    根据一次函数与一元一次不等式的关系进行解答即可.
    【详解】
    解:∵直线y=kx+b(k≠0)经过一、三象限且与y轴交于正半轴,
    ∴k>0,b>0,
    ∴y随x的增大而增大,y随x的减小而减小,
    ∵直线y=kx+b(k≠0)经过点P(-1,2),
    ∴当y<2,即kx+b<2时,x<-1.
    故答案为x<-1.
    本题考查了一次函数与一元一次不等式的联系.
    二、解答题(本大题共3个小题,共30分)
    24、(1);等腰直角.(2)详见解析;(3)
    【解析】
    (1)连接AF,由正方形的性质及折叠的性质已知,由全等可知,CF=CE,结合可确定是等腰直角三角形;(2)连接AF,由正方形的性质及折叠的性质已知,即证;(3)设,依据题意及(2)的结论用含x的式子确定出的三边长,根据勾股定理求出x的值,即可求面积.
    【详解】
    解:(1)连接,
    ∵四边形是正方形,∴,.
    由翻折可知,.
    ∵,∴.…
    ∴.
    又平分
    ∴AC垂直平分EF

    ∴是等腰直角三角形.
    故答案为:;等腰直角.

    (2)连接,
    ∵四边形是正方形的对角线,∴,.
    由翻折可知,.
    ∵,∴.…
    ∴.…
    (3)设,则,.
    在中,,即.
    解得,即的长为.
    ∴;…
    ∴.…
    本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.
    25、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.
    【解析】
    (1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到
    DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化. EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′- BE=CF- BE。
    【详解】
    (1)证明:∵△ABC是等边三角形,
    ∴AB=AC,∠ABC=∠ACB=60°.
    ∵DB=DC,∠BDC=120°,
    ∴∠DBC=∠DCB=30°.
    ∴∠DBE=∠DBC+∠ABC=90°,
    ∠DCF=∠DCB+∠ACB=90°.
    ∵EF∥BC,∴∠AEF=∠ABC=60°,
    ∠AFE=∠ACB=60°.∴AE=AF.
    ∴BE=AB-AE=AC-AF=CF.
    又∵DB=DC,∠DBE=∠DCF=90°,
    ∴△BDE≌△CDF.
    ∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.
    ∴BE=DE=DF=CF.
    ∵∠EDF=60°,∴△DEF是等边三角形,
    即DE=DF=EF.
    ∴BE+CF=DE+DF=EF,
    即EF=BE+CF.
    (2)解:结论仍然成立.
    理由如下:如图,在射线AB上取点F′,
    使BF′=CF,连接DF′.
    由(1)得∠DBE=∠DCF=90°,
    则∠DBF′=∠DCF=90°.
    又∵BD=CD,
    ∴△DCF≌△DBF′(SAS).
    ∴DF=DF′,∠BDF′=∠CDF.
    又∵∠BDC=120°,∠EDF=60°,
    ∴∠EDB+∠CDF=60°.
    ∴∠EDB+∠BDF′=∠EDF′=60°.
    ∴∠EDF′=∠EDF.
    又∵DE=DE,
    ∴△EDF′≌△EDF(SAS).
    ∴EF=EF′=BE+BF′=BE+CF.
    (3)解:结论发生变化.EF=CF-BE.
    理由:在射线AB上取点F′,
    使BF′=CF,连接DF′.
    由(1)得∠DBA=∠DCF=90°,
    则∠DBF′=∠DCF=90°.
    又∵BD=CD,
    ∴△DCF≌△DBF′(SAS).
    ∴DF=DF′,∠BDF′=∠CDF.
    又∵∠BDC=120°,∠EDF=60°,
    ∴∠FDB+∠CDF=60°.
    ∴∠FDB+∠BDF′=∠FDF′=120°.
    ∴∠EDF′=∠EDF=60°.
    又∵DE=DE,DF=DF′,
    ∴△EDF′≌△EDF(SAS).
    ∴EF=EF′=BF′- BE=CF- BE。
    此题考查等边三角形的性质及全等三角形的判定及性质;利用等边三角形的性质去探究全等三角形,利用全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.
    26、BC边上的高AD=.
    【解析】
    作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
    【详解】
    作AD⊥BC于D,
    由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
    ∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
    解得,CD=1,
    则BC边上的高AD=.
    考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    题号





    总分
    得分
    选 手




    平均数(环)
    9.2
    9.2
    9.2
    9.2
    方差(环2)
    0.035
    0.015
    0.025
    0.027
    平均成绩(环)
    中位数(环)
    众数(环)
    方差()

    7
    7
    1. 2

    7. 5
    4. 2
    相关试卷

    2024年安徽省宣城市宣州区狸桥中学九上数学开学教学质量检测试题【含答案】: 这是一份2024年安徽省宣城市宣州区狸桥中学九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省无锡市和桥区、张渚区九上数学期末达标测试试题含答案: 这是一份2023-2024学年江苏省无锡市和桥区、张渚区九上数学期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    江苏省无锡市和桥区、张渚区2023-2024学年八上数学期末检测模拟试题含答案: 这是一份江苏省无锡市和桥区、张渚区2023-2024学年八上数学期末检测模拟试题含答案,共6页。试卷主要包含了下列六个数,计算 的结果是,下列各式中正确的是,直线,如果,那么代数式的值是.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map