


2024年江苏省南通市崇川区启秀中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( )
A.30°B.60°C.90°D.150°
2、(4分)如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为( )
A.B.C.D.
3、(4分)某青年排球队12名队员的年龄情况如下表所示:
这12名队员的平均年龄是( )
A.18岁B.19岁C.20岁D.21岁
4、(4分)若分式的值为零,则x的值是( )
A.2或-2B.2C.-2D.4
5、(4分)平行四边形所具有的性质是( )
A.对角线相等
B.邻边互相垂直
C.每条对角线平分一组对角
D.两组对边分别相等
6、(4分)下列曲线中不能表示y与x的函数的是( )
A.B.C.D.
7、(4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A.AE=CFB.BE=FDC.BF=DED.∠1=∠2
8、(4分)关于正比例函数y=﹣3x,下列结论正确的是( )
A.图象不经过原点B.y随x的增大而增大
C.图象经过第二、四象限D.当x=时,y=1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.
10、(4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.
11、(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:
则这10双运动鞋尺码的众数和中位数分别为________________.
12、(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.
13、(4分)若分式的值为0,则x=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
(1)求直线AC的函数解析式;
(2)设点B(0,m),记平行四边形ABCD的面积为S,请写出S与m的函数关系式,并求当BD取得最小值时,函数S的值;
(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
15、(8分)甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同.已知乙每分钟比甲多打20个字,求甲每分钟打多少个字
16、(8分)解一元二次方程:
(1)6x2﹣x﹣2=0
(2)(x+3)(x﹣3)=3
17、(10分)求不等式组的解集,并把解集在数轴上表示出来
18、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.
20、(4分)计算:=___________
21、(4分)当m=_____时,x2+2(m﹣3)x+25是完全平方式.
22、(4分)如图,河坝横断面迎水坡的坡比是(坡比是斜坡两点之间的高度差与水平距离之比),坝高,则坡面的长度是_______.
23、(4分)一个纳米粒子的直径是0.000 000 035米,用科学记数法表示为______米.
二、解答题(本大题共3个小题,共30分)
24、(8分)请阅读,并完成填空与证明:
初二(8)、(9)班数学兴趣小组展示了他们小组探究发现的结果,内容为:图1,正三角形中,在,边上分别取,,使,连接,,发现利用“”证明≌,可得到,,再利用三角形的外角定理,可求得
(1)图2正方形中,在,边上分别取,,使,连接,,那么 ,且 度,请证明你的结论.
(2)图3正五边形中,在,边上分别取,,使,连接,,那么 ,且 度;
(3)请你大胆猜测在正边形中的结论:
25、(10分)已知的三边长分别为,求证:是直角三角形.
26、(12分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.
【详解】
∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故选:B.
本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.
2、B
【解析】
由数轴上点表示的数为,点表示的数为1,得PA=2,根据勾股定理得,进而即可得到答案.
【详解】
∵数轴上点表示的数为,点表示的数为1,
∴PA=2,
又∵l⊥PA,,
∴,
∵PB=PC=,
∴数轴上点所表示的数为:.
故选B.
本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.
3、C
【解析】
根据平均数的公式 求解即可.
【详解】
这12名队员的平均年龄是
(岁),
故选:C.
本题主要考查平均数,掌握平均数的求法是解题的关键.
4、C
【解析】
试题分析:当分式的分子为零,分母不为零时,则分式的值为零.
【详解】
x2-4=0,x=±2,同时分母不为0,∴x=﹣2
5、D
【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.
【详解】
平行四边形的对角相等,对角线互相平分,对边平行且相等.
故选D.
此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.
6、C
【解析】
函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.
【详解】
当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.
函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。
7、C
【解析】
试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,
若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.
考点:1.平行四边形的性质2.全等三角形的判定.
8、C
【解析】
根据正比例函数的性质直接解答即可.
【详解】
解:A、显然当x=0时,y=0,故图象经过原点,错误;
B、k<0,应y随x的增大而减小,错误;
C、k<0,图解经过二、四象限,正确;
D、把x=代入,得:y=-1,错误.
故选C.
本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<2.
【解析】
根据不等式与函数的关系由图像直接得出即可.
【详解】
由图可得关于的不等式的解集为x<2.
故填:x<2.
此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.
10、﹣1≤m≤1
【解析】
此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.
【详解】
解:∵点M在直线y=﹣x上,
∴M(m,﹣m),
∵MN⊥x轴,且点N在直线y=x上,
∴N(m,m),
∴MN=|﹣m﹣m|=|2m|,
∵MN≤8,
∴|2m|≤8,
∴﹣1≤m≤1,
故答案为﹣1≤m≤1.
此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.
11、1,1.
【解析】
本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
数据1出现了3次最多,这组数据的众数是1,
共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.
故答案为:1,1.
本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.
12、100°
【解析】
由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠A=∠C,∠A+∠B=180°,
∵∠A+∠C=160°,
∴∠A=∠C=80°,
∴∠B=180°﹣∠A=100°;
故答案为:100°.
本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.
13、1
【解析】
直接利用分式的值为零,则分子为零分母不为零,进而得出答案.
【详解】
∵分式的值为0,
∴x2-1=0,(x+1)(x-3)≠0,
解得:x=1.
故答案为1.
此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2) ①当m≤4时,S=-3m+12,②当m>4时,S=3m-12(3)(0,)
【解析】
(1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;
(2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;
(3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.
【详解】
解:(1)∵OA=3,OC=4,
∴A(-3,0)、C(0,4).
设直线AC的函数解析式为y=kx+b,
将点A(-3,0)、C(0,4)代入y=kx+b中,
得:,解得:,
∴直线AC的函数解析式为:.
(2)∵点B(0,m),四边形ABCD为以AC为对角线的平行四边形,
∴m≤4,BC=4-m,
∴S=BC•OA=-3m+12(m≤4).
同法m>4时,S=3m-12(m>4).
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴当BD⊥y轴时,BD最小(如图1).
∵AD∥OB,AO⊥OB,DA⊥OB,
∴四边形AOBD为矩形,
∴AD=OB=BC,
∴点B为OC的中点,即,
此时S=-3×2+12=1.
∴S与m的函数关式为S=-3m+12(m<4),当BD取得最小值时的S的值为1.
(3)存在
当AB=CB时,平行四边形ABCD为菱形.
理由如下:
∵平行四边形ABCD是菱形,
∴AB=BC.
,
,
解得:,
.
本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题;
15、60
【解析】
设甲每分钟打x个字,根据“甲打1800字的时间与乙打2400字的时间相同”列出方程,解方程即可求解.
【详解】
解:设甲每分钟打x个字.
根据题意,得 .
解得 .
经检验, 是原方程的解,且符合题意.
答:甲打字的速度是每分钟60个字。
本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
16、 (1)x1=,x2=﹣;(2)x1=2,x2=﹣2.
【解析】
(1)直接利用公式法求解即可;
(2)方程整理后,利用直接开平方法求解即可.
【详解】
解:(1)a=6,b=﹣1,c=﹣2,
∵△=1+48=49,
∴x=,
解得:x1=,x2=﹣;
(2)
方程整理得:x2=12,
开方得:x=±2,
解得:x1=2,x2=﹣2.
本题主要考查解一元二次方程,掌握解一元二次方程的方法,并能根据题目灵活选用合适的方法是解题的关键.
17、不等式组的解集为x>3,在数轴上表示见解析.
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来.
【详解】
∵由不等式①得:x≥2,
由不等式②得:x>3,
∴不等式组的解集为x>3,
在数轴上表示为:.
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
18、(1)该户6月份水费是45元;(2)y=3.3x-1.
【解析】
(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
【详解】
解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
2.5×18=45(元),
答:该户6月份水费是45元;
(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
应缴水费y=2.5×20+3.3×(x-20),
整理后得:y=3.3x-1,
答:y关于x的函数关系式为y=3.3x-1.
本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣2x﹣2
【解析】
根据“左加右减,上加下减”的平移规律即可求解.
【详解】
解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.
故答案为.
本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.
20、6
【解析】
先取绝对值符号、计算负整数指数幂和零指数幂,再计算加减可得;
【详解】
解:原式=1+1+4=6
故答案为:6
此题主要考查了实数运算,绝对值,负整数指数幂和零指数幂,正确化简各数是解题关键.
21、8或﹣1
【解析】
先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
【详解】
解:∵x1+1(m﹣3)x+15=x1+1(m﹣3)x+51,
∴1(m﹣3)x=±1×5x,
m﹣3=5或m﹣3=﹣5,
解得m=8或m=﹣1.
故答案为:8或﹣1.
本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.
22、
【解析】
根据坡度的概念求出AC,根据勾股定理求出AB.
【详解】
解:∵坡AB的坡比是1:,坝高BC=2m,
∴AC=2,
由勾股定理得,AB==1(m),
故答案为:1.
此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.
23、3.5×10-1.
【解析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000 000 035=3.5×10-1.
故答案为:3.5×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.
二、解答题(本大题共3个小题,共30分)
24、(1); ;证明详见解析;(2) ;;(3)对于正n边形,结论为:,
【解析】
(1)利用SAS证出≌,从而证出,,然后利用等量代换即可得出结论;
(2)先求出正五边形的每个内角的度数,利用SAS证出≌,从而证出,,然后利用等量代换即可得出结论;
(3)根据题意,画出图形,然后根据(1)(2)的方法推出结论即可.
【详解】
(1) ,且度.证明如下:
∵四边形是正方形
∴,
在△ABN和△DAM中
∴≌
∴,
∵
∴
故答案为:; ;
(2) 且度.证明如下:
正五边形的每个内角为:,
∴,
在△ABN和△EAM中
∴≌
∴,
∵
∴
故答案为:; ;
(3)设这个正n边形为,在,边上分别取,,使,连接,,和交于点O,如下图所示:
正n边形的每个内角为:,
∴,
在和中
∴≌
∴,
∵
∴
即对于正n边形,结论为:,.
此题考查的是全等三角形的判定及性质和多边形的内角和,掌握全等三角形的判定及性质和多边形的内角和公式是解决此题的关键.
25、见解析.
【解析】
根据勾股定理的逆定理解答即可.
【详解】
证明:
,
以为三边的是直角三角形.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
26、不是,理由见解析.
【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
【详解】
解:如图,设梯子下滑至CD,
∵Rt△OAB中,AB=2.5m,AO=2.4m,
∴OB=m,
同理,Rt△OCD中,
∵CD=2.5m,OC=2.4-0.4=2m,
∴OD=m,
∴BD=OD-OB=1.5-0.7=0.8(m).
答:梯子底端B向外移了0.8米.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
题号
一
二
三
四
五
总分
得分
批阅人
尺码(厘米)
25
25.5
26
26.5
27
购买量(双)
1
2
3
2
2
2024年江苏省南通市启秀中学九上数学开学教学质量检测试题【含答案】: 这是一份2024年江苏省南通市启秀中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南通市启秀中学数学九年级第一学期开学经典试题【含答案】: 这是一份2024-2025学年江苏省南通市启秀中学数学九年级第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
南通市崇川区启秀中学2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份南通市崇川区启秀中学2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。