南通市崇川区启秀中学2024-2025学年数学九上开学复习检测模拟试题【含答案】
展开
这是一份南通市崇川区启秀中学2024-2025学年数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在中,,,的对边分别是a,b,c,下列条件中,不能判定是直角三角形的是( )
A.B.
C.,,D.
2、(4分)已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:
下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1, x2=2;③当x>2时,y<1.
其中所有正确结论的序号是( )
A.①②③B.①C.②③D.①②
3、(4分)已知一组数据1,2,3,,它们的平均数是2,则这一组数据的方差为( )
A.1B.2C.3D.
4、(4分)如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是( )
A.①②③B.①③④C.②③④D.①②
5、(4分)大肠杆菌的长度平均约为0.0000014米,把这个数用科学记数表示正确的是( )米.
A.1.4×106B.1.4×10﹣5C.14×10﹣7D.1.4×10﹣6
6、(4分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是( )
A.B.C.D.
7、(4分)要使分式有意义,则x的取值应满足( )
A.B.C.D.
8、(4分)若分式的值为0,则x的值为( )
A.0B.-1C.1D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)的整数部分是a,小数部分是b,则________.
10、(4分) “a的3倍与b的差不超过5”用不等式表示为__________.
11、(4分)两个实数,,规定,则不等式的解集为__________.
12、(4分)如图,把一张长方形的纸沿对角线BD折叠后,顶点A落在A′处,已知∠CDA′=28°,则∠CBD=______________.
13、(4分)如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值
15、(8分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
16、(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.
(1)请填写下表;
(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.
17、(10分)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.
18、(10分)解一元二次方程:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是__________。
20、(4分)如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.
21、(4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为_________________.
22、(4分)已知m是一元二次方程的一个根 , 则代数式的值是_____
23、(4分)如图,AD∥BC,CP和DP分别平分∠BCD和∠ADC,AB过点P,且与AD垂直,垂足为A,交BC于B,若AB=10,则点P到DC的距离是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知,求证:)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.
25、(10分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连接PO并延长交BC于点Q,设运动时间为t (0<t<5).
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
26、(12分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据三角形内角和定理以及直角三角形的性质即可求出答案.
【详解】
A. ∵,,∴∠C=90°, ∴是直角三角形,故能确定;
B. ,,∴∠C=90°, ∴是直角三角形,故能确定;
C. ∵, ∴是直角三角形,故能确定;
D.设a=1,b=2,c=2,
∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.
故选:D.
本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.
2、D
【解析】
根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.
【详解】
解:①由图表中数据可知:x=−1和3时,函数值为−3,所以,抛物线的对称轴为直线x=1,而x=1时,y=5最大,所以二次函数y=ax2+bx+c开口向下,a<1;故①正确;
②∵二次函数y=ax2+bx+c的对称轴为x=1,在(1,3)的对称点是(2,3),∴方程ax2+bx+c=3的解为x1=1,x2=2;故②正确;
③∵二次函数y=ax2+bx+c的开口向下,对称轴为x=1,(1,3)的对称点是(2,3),∴当x>2时,y<3;故③错误;
所以,正确结论的序号为①②
故选D.
本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,有一定难度.熟练掌握二次函数图象的性质是解题的关键.
3、D
【解析】
先根据平均数的定义确定出n的值,再根据方差的计算公式计算即可.
【详解】
解:∵数据 1,2,3,n的平均数是2,
∴(1+2+3+n)÷4=2,
∴n=2,
∴这组数据的方差是:
故选择:D.
此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
4、A
【解析】
连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.
【详解】
连接OO′,如图,
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,
∴BO′=BO=8,∠OBO′=60°,
∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;
∵△BOO′为等边三角形,
∴OO′=OB=8,所以②正确;
∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,
∴AO′=OC=10,
在△AOO′中,
∵OA=6,OO′=8,AO′=10,
∴OA2+OO′2=AO′2,
∴△AOO′为直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;
,
故④错误,
故选:A.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.
5、D
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为(为整数),与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故选:D.
本题主要考查了科学记数法的表示,熟练掌握相关表示方法是解决本题的关键.
6、A
【解析】
由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.
【详解】
由于直线y1=kx+b过点A(0,2),P(1,m),
则有:
解得 .
∴直线y1=(m−2)x+2.
故所求不等式组可化为:
mx>(m−2)x+2>mx−2,
不等号两边同时减去mx得,0>−2x+2>−2,
解得:1
相关试卷
这是一份南通市启秀中学2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南通市崇川区八一中学2024-2025学年九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南通市崇川区八一中学2024-2025学年数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。