2024年江苏省南京市溧水区孔镇中学数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是( )
A.6B.5C.4D.3
2、(4分)已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是( )
A.两点关于x轴对称
B.两点关于y轴对称
C.两点关于原点对称
D.点(-2,3)向右平移两个单位得到点(2,3)
3、(4分)如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是
A.B.C.D.5
4、(4分)如图,矩形中,对角线、交于点.若,,则的长为( )
A.6B.5C.4D.3
5、(4分)如图1,在矩形中,动点从点出发,沿方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函致图象如图2所示,则矩形的周长是( )
图1 图2
A.B.C.D.
6、(4分)如图,在中,点、分别为边、的中点,若,则的长度为( )
A.2B.3C.4D.5
7、(4分)在平行四边形中,若,则下列各式中,不能成立的是( )
A.B.C.D.
8、(4分)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是( )
A.y3<y1<y2 B.y1<y2<y3 C.y3>y1>y2 D.y1>y2>y3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.
10、(4分)如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C'的位置上,若∠BFE=67°,则∠ABE的度数为_____.
11、(4分)当x_____时,二次根式有意义.
12、(4分)若不等式组无解,则a的取值范围是___.
13、(4分)若m=2,则的值是_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)作图题:在△ABC中,点D是AB边的中点,请你过点D作△ABC的中位线DE交AC于点E.(不写作法,保留作图痕迹)
15、(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):
七年级 88 94 90 94 84 94 99 94 99 100
八年级 84 93 88 94 93 98 93 98 97 99
整理数据:按如下分数段整理数据并补全表格:
分析数据:补全下列表格中的统计量:
得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)
16、(8分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点
(1)求点P的坐标及反比例函数的解析式;
(2)点是x轴上的一个动点,若,直接写出n的取值范围.
17、(10分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
(1)试判断四边形AEDF的形状,并证明;
(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.
18、(10分)2017年5月5日,国产大飞机C919首飞圆满成功.C919是中国首款按照最新国际适航标准,具有自主知识产权的干线民用飞机,于2008年开始研制,是China的首字母,第一个“9”的寓意是天长地久,“19”代表的是中国首款中型客机最大载客量为190座,截止2018年2月底,C919大型客机的国内外用户达到28家,订单总数超过800架,表1是其中20家客户的订单情况
表1:
根据表1所提供的数据补全表2
表2:
这20个数据的中位数为 ,众数为 。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若=3-x,则x的取值范围是__________.
20、(4分)不等式组的所有整数解的积是___________.
21、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____
22、(4分)因式分解:x2﹣x=______.
23、(4分)某个“清凉小屋”自动售货机出售三种饮料.三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶. 工作日期间,每天上货量是固定的,且能全部售出,其中,饮料的数量(单位:瓶)是饮料数量的2倍,饮料的数量(单位:瓶)是饮料数量的2倍. 某个周六,三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出. 但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元. 则这个“清凉小屋”自动售货机一个工作日的销售收入是__________元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.
(1)正方体的棱长为 cm;
(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;
(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.
25、(10分)已知关于的方程.
(1)求证:无论取何值时,方程总有实数根;
(2)给取一个适当的值,使方程的两个根相等,并求出此时的两个根.
26、(12分)如图,D为AB上一点,△ACE≌△BCD,AD2+DB2=DE2,试判断△ABC的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
解:,是的中点,
.
故选:.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
2、B
【解析】
几何变换.
根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.
【详解】
解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,
∴两点关于y轴对称,
故选:B.
本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.
3、B
【解析】
由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.
【详解】
解:四边形是菱形
,,
故选:.
本题菱形的性质,熟练运用菱形的面积公式是本题的关键.
4、B
【解析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=AC=1,∠ABC=90°,
∴∠OBC=∠ACB=30°
∵∠AOB=∠OBC+∠ACB
∴∠AOB=60°
∵OA=OB
∴△AOB是等边三角形
∴AB=OA=1
故选:B
本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.
5、C
【解析】
根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.
【详解】
解:由图形可知,,
周长为,
故选C.
本题考查了动点函数图象,利用三角型面积的变化确定R的位置是解题关键.
6、C
【解析】
根据三角形中位线定理计算即可.
【详解】
解:∵、分别为边、的中点,,
∴BC=2DE=4,
故选C.
本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
7、D
【解析】
由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.
【详解】
∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D,∠A+∠B=180°
而∠A=50°,
∴∠C=∠A=50°,∠B=∠D =130°,
∴D选项错误,
故选D.
本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.
8、D
【解析】k=-3<0,所以函数y随x增大而减小,所以y1>y2>y3,所以选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据直角三角形的性质求出AB,根据勾股定理求出BC,计算求出BD,根据勾股定理计算即可.
【详解】
解:∵∠ABC=90°,∠ACB=30°,
∴AB=AC=10,
由勾股定理得,BC=,
∴BD=BC﹣CD=6,
∴AD=,
故答案为:.
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
10、44°
【解析】
利用平行线的性质以及三角形的内角和定理即可解决问题.
【详解】
∵AD∥BC,
∴∠DEF=∠BFE=67°;
又∵∠BEF=∠DEF=67°,
∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣67°﹣67°=46°,
∵∠A=90°,
∴∠ABE=90°﹣46°=44°,
故答案为44°.
本题考查平行线的性质,解题的关键是熟练掌握作为基本知识.
11、x≥
【解析】
分析:根据二次根式的定义,形如的式子叫二次根式,列不等式解答.
详解:由题意得
2x-3≥0,
∴x≥.
故答案为x≥.
点睛:本题考查了二次根式有意义的条件,明确被开方式大于且等于零是二次根式成立的条件是解答本题的关键.
12、a<1.
【解析】
解出不等式组含a的解集,与已知不等式组 无解比较,可求出a的取值范围.
【详解】
解不等式3x﹣2≥ ,得:x≥1,
解不等式x﹣a≤0,得:x≤a,
∵不等式组无解,
∴a<1,
故答案为a<1.
此题考查解一元一次不等式组,解题关键在于掌握运算法则
13、0
【解析】
先把所求的式子因式分解,再代入m的值进行求解.
【详解】
原式=(m-2)2=0
此题主要考查因式分解的应用,解题的关键是根据所求的式子特点进行因式分解,从而进行简便计算.
三、解答题(本大题共5个小题,共48分)
14、如图所示,线段DE即为所求,见解析.
【解析】
作AC的垂直平分线,再连接DE即可.
【详解】
如图所示,线段DE即为所求:
此题考查作图问题,关键是根据垂直平分线的作图解答.
15、整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.
【解析】
整理数据:根据八年级抽取10名学生的成绩,可得;
分析数据:根据题目给出的数据,利用众数的定义,中位数的定义求出即可;
得出结论:根据给出的平均数和方差分别进行分析,即可得出答案.
【详解】
解:整理数据:八年级段1人,段1人
分析数据,由题意,可知94分出现次数最多是4次,所以七年级10名学生的成绩众数是94,
将八年级10名学生的成绩从小到大排列为:84,88,93,93,93,94,97,98,98,99,
中间两个数分别是93,94,(93+94)÷2=93.5,
所以八年级10名学生的成绩中位数是93.5;
得出结论:认为八年级学生大赛的成绩比较好.
理由如下:八年级学生大赛成绩的平均数较高,表示八年级学生大赛的成绩较好;
八年级学生大赛成绩的方差小,表示八年级学生成绩比较集中,整体水平较好.
故答案为:整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.
本题考查平均数、中位数、众数、方差的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.
16、(1);(2)
【解析】
(1)先把P(1,a)代入y=x+2,求出a的值,确定P点坐标为(1,3),然后把P(1,3)代入y=求出k的值,从而可确定反比例函数的解析式;
(2)过P作PB⊥x轴于点B,则B点坐标为(1,0),PB=3,然后利用PQ≤1,由垂线段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1时,易确定n的取值范围,要注意分点Q在点B左右两种情况.当点Q在点B左侧时,点Q坐标为(-3,0);当点Q在点B右侧时,点Q坐标为(1,0),从而确定n的取值范围.
【详解】
解:(1)∵直线与反比例函数的图象交于点,
∴.
∴点P的坐标为.
∴.
∴反比例函数的解析式为.
(2)过P作PB⊥x轴于点B,
∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤1,
由勾股定理得BQ≤,
∴1-4=-3,1+4=1,
∴n的取值范围为-3≤n≤1.
本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.
17、(1)见解析;(2)PC+PD的最小值为:1.
【解析】
(1)根据对称性,围绕证明对角线互相垂直平分找条件;
(2)求线段和最小的问题,P点的确定方法是:找D点关于直线EF的对称点A,再连接AC,AC与直线EF的交点即为所求.
【详解】
解:(1)四边形AEDF为菱形,
证明:由折叠可知,EF垂直平分AD于G点,
又∵AD平分∠BAC,
∴△AEG≌△AFG,
∴GE=GF,
∵EF垂直平分AD,
∴EF、AD互相垂直平分,
∴四边形AEDF为菱形(对角线互相垂直平分的四边形是菱形).
(2)已知D点关于直线EF的对称点为A,AC与EF的交点E即为所求的P点,
PC+PD的最小值为:CP+DP=CE+DE=CE+AE=AC= =1.
故答案为:(1)见解析;(2)PC+PD的最小值为:1.
本题考查折叠问题以及菱形的判定.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后线段相等.
18、补全表2见解析;中位数为1,众数为1.
【解析】
根据提供的数据体统计出1架和45架的频数,填入表格即可;根据中位数众数的意义,分别找出出现次数最多的数,和第10、11个数的平均数,就可得出众数、中位数.
【详解】
解:根据表1所提供的数据补全表2,如图所示:
这1个数据位于第10、11位的两个数都是1,因此中位数是1;出现次数最多的是1,因此众数是1,
故答案为:1,1.
考查频率分布表、中位数、众数的意义和求法,将数据从大到小排序后,找出处于中间位置的一个数或两个数的平均数即为中位数,出现次数最多的即为众数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题解析:∵=3﹣x,
∴x-3≤0,
解得:x≤3,
20、1
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
【详解】
由1-2x<3,得:x>-1,
由 ≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.
此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
21、1.2
【解析】分析: 先由平均数的公式计算出a的值,再根据方差的公式计算即可.
详解: ∵数据10,9,a,12,9的平均数是10,
∴(10+9+a+12+9)÷5=10,
解得:a=10,
∴这组数据的方差是15[(10−10) ² +(9−10) ² +(10−10) ² +(12−10) ² +(9−10) ²]=1.2.
故选B.
点睛: 本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
22、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
23、760
【解析】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;于是可以列方程求出C的数量,进而求出工作日期间一天的销售收入.
【详解】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,
由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,
所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;
于是有:10.1x-(3-2)=403
解得:x=40.
工作日期间一天的销售收入为:19×40=760元.
故答案为:760.
考查销售过程中的数量之间的关系,以及方程的整数解得问题,通过探索、推理、验证得到答案.
二、解答题(本大题共3个小题,共30分)
24、(1)10;(2)y=x+(12≤x≤28);(3)4 s.
【解析】
(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;
(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;
(3)利用一次函数图象结合水面高度的变化得出t的值.
【详解】
(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
所以正方体的棱长为10cm;
故答案为10cm;
(2)设线段AB对应的函数解析式为:y=kx+b,
∵图象过A(12,0),B(28,20),
∴,
解得:,
∴线段AB对应的解析式为:(12≤x≤28);
(3)∵28﹣12=16(cm),
∴没有立方体时,水面上升10cm,所用时间为:16秒,
∵前12秒由立方体的存在,导致水面上升速度加快了4秒,
∴将正方体铁块取出,经过4秒恰好将此水槽注满.
25、(1)详见解析;(2)
【解析】
(1)先根据根的判别式求出△,再判断即可;
(2)把代入方程,求出方程的解即可.
【详解】
(1)∵
∴无论取何值时,方程总有实数根;
(2)当即时,方程的两根相等,
此时方程为
解得
本题考查了根的判别式和解一元二次方程,能熟记根的判别式的内容是解此题的关键.
26、△ABC是等腰直角三角形,理由见解析.
【解析】
试题分析:根据全等三角形的性质得出AC=BC,∠EAC=∠B,AE=BD,根据勾股定理的逆定理得出∠EAD=90°,求出∠ACB=90°,即可求出答案.
试题解析:△ABC是等腰直角三角形,
理由是:∵△ACE≌△BCD,
∴AC=BC,∠EAC=∠B,AE=BD,
∵AD2+DB2=DE2,
∴AD2+AE2=DE2,
∴∠EAD=90°,
∴∠EAC+∠DAC=90°,
∴∠DAC+∠B=90°,
∴∠ACB=180°﹣90°=90°,
∵AC=BC,
∴△ABC是等腰直角三角形.
题号
一
二
三
四
五
总分
得分
成绩x
人数 年级
七年级
1
1
5
3
八年级
4
4
统计量
年级
平均数
中位数
众数
方差
七年级
93.6
94
24.2
八年级
93.7
93
20.4
客户
订单(架)
客户
订单(架)
中国国际航空
20
工银金融租赁有限公司
45
中国东方航空
20
平安国际融资租赁公司
50
中国南方航空
20
交银金牌租赁有限公司
30
海南航空
20
中国飞机租赁有限公司
20
四川航空
15
中银航空租赁私人有限公司
20
河北航空
20
农银金融租赁有限公司
45
幸福航空
20
建信金融租赁股份有限公司
50
国银金融租赁有限公司
15
招银金融租赁有限公司
30
美国通用租赁公司
20
兴业金融租赁公司
20
泰国都市航空
10
德国普仁航空公司
7
订单(架)
7
10
15
20
30
45
50
订单(架)
1
1
2
2
2
2024年江苏省泗阳县王集中学数学九上开学预测试题【含答案】: 这是一份2024年江苏省泗阳县王集中学数学九上开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省高邮市车逻镇初级中学数学九上开学教学质量检测试题【含答案】: 这是一份2024年江苏省高邮市车逻镇初级中学数学九上开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省大丰市刘庄镇三圩初级中学数学九上开学调研试题【含答案】: 这是一份2024年江苏省大丰市刘庄镇三圩初级中学数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。