2023-2024学年江苏省金坛市尧塘,河头,水北中学九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.将点A(﹣3,4)绕原点顺时针方向旋转180°后得到点B,则点B的坐标为( )
A.(3,﹣4)B.(﹣4,3)C.(﹣4,﹣3)D.(﹣3,﹣4)
2.如图,是的直径,弦于,连接、,下列结论中不一定正确的是( )
A.B.C.D.
3.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为( )
A.2B.C.4D.6
4.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
A.9人B.10人C.11人D.12人
5.将函数的图象向左平移个单位,再向下平移个单位,可得到的抛物线是:( )
A.B.C.D.
6.抛物线的顶点坐标是( )
A.(2, 1)B.(2, -1)C.(-2, 1)D.(-2, -1)
7.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定( )
A.与x轴相切,与y轴相切B.与x轴相切,与y轴相离
C.与x轴相离,与y轴相切D.与x轴相离,与y轴相离
8.下列函数中,图象不经过点(2,1)的是( )
A.y=﹣x2+5B.y=C.y=xD.y=﹣2x+3
9.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能 ( )
A.4个B.6个C.34个D.36个
10.如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为( )
A.15B.20C.25D.30
二、填空题(每小题3分,共24分)
11.__________.
12.若,则=_____.
13.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 .
14.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm1.(结果保留π)
15.如图, 圆的直径垂直于弦,垂足是,,,的长为__________.
16.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.
17.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.
18.如图,与⊙相切于点,,,则⊙的半径为__________.
三、解答题(共66分)
19.(10分)(1)计算
(2)解方程.
20.(6分)已知二次函数y=x2-2x-1.
(1)求图象的对称轴、顶点坐标;
(2)当x为何值时,y随x的增大而增大?
21.(6分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.
(1)在图①中,画一个与∠B互补的圆周角;
(2)在图②中,画一个与∠B互余的圆周角.
22.(8分)如图,在中,∠A=90°,AB=12cm,AC=6cm,点P沿AB边从点A开始向点B以每秒2cm的速度移动,点Q沿CA边从点C开始向点A以每秒1cm的速度移动,P、Q同时出发,用t表示移动的时间.
(1)当t为何值时,△QAP为等腰直角三角形?
(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
23.(8分)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.1.
(1)求y关于x的函数关系式;
(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?
(3)若公司希望该产品一年的销售获利不低于17.1万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?
24.(8分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.
(1)求一次函数与反比例函数的表达式;
(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
25.(10分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.
(1)求证:与相切:
(2)若,,求长;
(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.
26.(10分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.
⑴求证:BE是⊙O的切线;
⑵若BC=,AC=5,求圆的直径AD的长.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、A
4、C
5、C
6、C
7、B
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、1
14、15π
15、
16、﹣<a<
17、1
18、
三、解答题(共66分)
19、(1)-6;(2)
20、(1) 对称轴是x=1,顶点坐标是(1,-4);(2)当x>1时,y随x的增大而增大.
21、(1)见解析;(2)见解析
22、(1);(2)或.
23、(1);(2)当x=81元时,年获利最大值为80万元;(3)销售单价定为70元
24、(1),;(2).
25、(1)详见解析;(2)4;(3)
26、(1)详见解析;(2)1
江苏省金坛市尧塘中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份江苏省金坛市尧塘中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了已知A样本的数据如下,下列判断正确的是等内容,欢迎下载使用。
2023-2024学年江苏省金坛市尧塘,河头,水北中学九年级数学第一学期期末调研试题含答案: 这是一份2023-2024学年江苏省金坛市尧塘,河头,水北中学九年级数学第一学期期末调研试题含答案,共7页。试卷主要包含了下列说法,如图,下列事件属于必然事件的是,下列各点在抛物线上的是等内容,欢迎下载使用。
2023-2024学年江苏省金坛市尧塘中学数学八上期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省金坛市尧塘中学数学八上期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列四个数中,是无理数的是,如图,已知,芝麻作为食品和药物,均广泛使用,下列四种说法等内容,欢迎下载使用。