年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年河南省郸城县九上数学开学复习检测试题【含答案】

    2024年河南省郸城县九上数学开学复习检测试题【含答案】第1页
    2024年河南省郸城县九上数学开学复习检测试题【含答案】第2页
    2024年河南省郸城县九上数学开学复习检测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河南省郸城县九上数学开学复习检测试题【含答案】

    展开

    这是一份2024年河南省郸城县九上数学开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示的图形中既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    2、(4分)如图,直线的解析式为,直线的解析式为,则不等式的解集是( )
    A.B.C.D.
    3、(4分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )
    A.3.5B.4.2C.5.8D.7
    4、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为( )
    A.3B.4C.6D.5
    5、(4分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )
    A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD
    6、(4分)关于一次函数y=x﹣1,下列说法:①图象与y轴的交点坐标是(0,﹣1);②y随x的增大而增大;③图象经过第一、二、三象限; ④直线y=x﹣1可以看作由直线y=x向右平移1个单位得到.其中正确的有( )
    A.1个 B.2个 C.3个 D.4个
    7、(4分)用配方法解一元二次方程时,可配方得( )
    A.B.
    C.D.
    8、(4分)如图所示,正方形ABCD的边长为6,M在DC上,且DM=4,N是AC上的动点,则DN+MN的最小值是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知y+1与x成正比例,则y是x的_____函数.
    10、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
    11、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
    12、(4分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=________cm.
    13、(4分)如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)问题情境:
    平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直
    线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
    数学探究:
    点C的坐标为______;
    求点E的坐标及直线BE的函数关系式;
    若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
    若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
    15、(8分)如图,、相交于点,且是、的中点,点在四边形外,且,
    求证:边形是矩形.
    16、(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
    (1)求证:AF=DC;
    (2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
    17、(10分)如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.
    (1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点).
    (2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界).
    18、(10分)为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题.
    (1)①中的描述应为“ 6分m% ”,其中的m值为_________;扇形①的圆心角的大小是______;
    (2)求这40个样本数据平均数、众数、中位数;
    (3)若该校九年级共有160名学生,估计该校理化实验操作得满分的学生有多少人.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “暑期乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是,, 如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择是________.
    20、(4分)若分式的值为0,则x的值是_____.
    21、(4分)在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.
    22、(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边形DEOF,其中正确结论的序号是_____.
    23、(4分)如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“ ”或“”).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.
    (1)求点停止运动时,的长;
    (2) 两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.
    (3) 两点在运动过程中,求使与相似的时间的值.
    25、(10分)由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).
    (1)请画出△ABC关于y轴对称的△ABC;
    (2)画出△ABC关于原点O成中心对称的△ABC;
    (3)请你判断△AAA与△CCC的相似比;若不相似,请直接写出△AAA的面积.
    26、(12分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.
    (1)求出这10名女生的身高的中位数和众数;
    (2)依据样本估计该校八年级全体女生的平均身高;
    (3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;
    B、不是中心对称图形,是轴对称图形,故本选项不符合题意;
    C、不是中心对称图形,是轴对称图形,故本选项不符合题意;
    D、既是中心对称图形,又是轴对称图形,故本选项符合题意.
    故选:D.
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    2、D
    【解析】
    由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
    【详解】
    不等式对应的函数图象是直线在直线“下方”的那一部分,
    其对应的的取值范围,构成该不等式的解集.所以,解集应为,
    直线过这点,把代入易得,.
    故选:D.
    此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
    3、D
    【解析】
    解:根据垂线段最短,可知AP的长不可小于3
    ∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,
    ∴AP的长不能大于1.

    故选D.
    4、C
    【解析】
    根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有,从而求出.
    【详解】
    解:∵D、E分别是AB、AC的中点.
    ∴DE是△ABC的中位线,
    ∴BC=2DE,
    ∵DE=3,
    ∴BC=2×3=1.
    故选:C.
    本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    5、D
    【解析】
    A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;
    B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;
    C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;
    D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.
    故选D.
    6、C
    【解析】
    ①将x=0代入一次函数解析式中求出y值,由此可得出结论①符合题意;②由k=1>0结合一次函数的性质即可得出y随x的增大而增大,即结论②符合题意;③由k、b的正负结合一次函数图象与系数的关系即可得出该函数图象经过第一、三、四象限,即结论③不符合题意;④根据平移“左加右减”即可得出将直线y=x向右平移1个单位得到的直线解析式为y=x-1,即结论④符合题意.综上即可得出结论.
    【详解】
    ①当x=0时,y=-1,
    ∴图象与y轴的交点坐标是(0,-1),结论①符合题意;
    ②∵k=1>0,
    ∴y随x的增大而增大,结论②符合题意;
    ③∵k=1>0,b=-1<0,
    ∴该函数图象经过第一、三、四象限,结论③不符合题意;
    ④将直线y=x向右平移1个单位得到的直线解析式为y=x-1,
    ∴结论④符合题意.
    故选:C.
    考查了一次函数的性质、一次函数图象与系数的关系以及一次函数图象与几何变换,逐一分析四条结论是否符合题意是解题的关键.
    7、C
    【解析】
    根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.
    【详解】
    移项,得x1-4x=-1
    在等号两边加上4,得x1-4x+4=-1+4
    ∴(x-1)1=1.
    故C答案正确.
    故选C.
    本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.
    8、B
    【解析】
    连BD,BM,BM交AC于N′,根据正方形的性质得到B点与D点关于AC对称,则有N′D+N′M=BM,利用两点之间线段最短得到BM为DN+MN的最小值,然后根据勾股定理计算即可.
    【详解】
    连BD,BM,BM交AC于N′,如图,
    ∵四边形ABCD为正方形,
    ∴B点与D点关于AC对称,
    ∴N′D=N′B,
    ∴N′D+N′M=BM,
    ∴当N点运动到N′时,它到D点与M点的距离之和最小,最小距离等于MB的长,
    而BC=CD=6,DM=4,
    ∴MC=2,
    ∴BM= .
    故选:B.
    此题考查轴对称-最短路线问题,勾股定理,正方形的性质,解题关键在于作辅助线.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、一次
    【解析】
    将y+1看做一个整体,根据正比例函数的定义列出解析式解答即可.
    【详解】
    y+1与x成正比例,
    则y+1=kx,
    即y=kx-1,
    符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
    10、4cm
    【解析】
    在▱ABCD中
    ∵BC=AD=6cm,AO=CO,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴AC==8cm,
    ∴AO=AC=4cm;
    故答案为4cm.
    11、a⩽3.
    【解析】
    根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
    【详解】
    ∵在实数范围内有意义,
    ∴3−a⩾0,
    解得a⩽3.
    故答案为:a⩽3.
    此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
    12、6+
    【解析】
    由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.
    【详解】
    解:作AB的垂直平分线,交AC于点E,
    ∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,
    ∴tan30°==,
    解得:CD=cm,
    ∵BC=3cm,∴BE=6cm,∴CE=3cm,
    ∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.
    13、10cm
    【解析】
    求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.
    【详解】
    解:∵∠A=∠B,
    ∴BC=AC=5cm,
    ∵DF∥AC,
    ∴∠A=∠BDF,
    ∵∠A=∠B,
    ∴∠B=∠BDF,
    ∴DF=BF,
    同理AE=DE,
    ∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
    故答案为10cm.
    本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)(10,6);(2) ), ;(3)见解析.
    【解析】
    (1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,
    ,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.
    【详解】
    解:四边形OBCD是矩形,

    ,,

    故答案为;
    四边形OBCD是矩形,
    ,,,
    设,

    由折叠知,,,
    在中,根据勾股定理得,,

    在中,根据勾股定理得,,



    设直线BE的函数关系式为,



    直线BE的函数关系式为;
    存在,理由:由知,,

    能使以A,B,P,Q为顶点的四边形是平行四边形,

    当BQ为的对角线时,

    点B,P在x轴,
    的纵坐标等于点A的纵坐标6,
    点Q在直线BE:上,



    当BQ为边时,
    与BP互相平分,
    设,



    即:直线BE上是存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形,点或.
    本题考核知识点:一次函数的综合运用. 解题关键点:熟记一次函数性质和特殊平行四边形的性质和判定.
    15、见解析.
    【解析】
    连接EO,首先根据O为BD和AC的中点,得出四边形ABCD是平行四边形,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,得到AC=BD,可证出结论.
    【详解】
    解:连接如图所示:
    是、的中点,
    ∴,,
    ∴四边形是平行四边形,
    在中,为中点,,
    在中,为中点,,
    ,又四边形是平行四边形,
    平行四边形是矩形.
    此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.
    16、(1)见解析(2)见解析
    【解析】
    (1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
    (2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
    【详解】
    解:(1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE.
    ∵E是AD的中点,AD是BC边上的中线,
    ∴AE=DE,BD=CD.
    在△AFE和△DBE中,
    ∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
    ∴△AFE≌△DBE(AAS)
    ∴AF=BD.
    ∴AF=DC.
    (2)四边形ADCF是菱形,证明如下:
    ∵AF∥BC,AF=DC,
    ∴四边形ADCF是平行四边形.
    ∵AC⊥AB,AD是斜边BC的中线,
    ∴AD=DC.
    ∴平行四边形ADCF是菱形
    17、(1)答案见解析 (2)答案见解析
    【解析】
    (1)根据一组对边平行且相等是平行四边形,过P作AB的平行线,使其作为平行四边形的一边,并且使这条边等于AB,端点在格点上即可.方案不唯一.
    (2)根据四条边相等的四边形是菱形,由三角形全等的性质构造菱形的四条边,且使P点在菱形的内部即可.方案不唯一.
    【详解】
    (1)解:如下图
    (2)解:如下图
    本题考查了平行四边形和菱形的判定,灵活应用两者的性质画符合题意的平行四边形及菱形是解题的关键.
    18、(1)10;;(2)8.3;9;8;(3)28
    【解析】
    (1)所占百分比=所求人数与总人数之比,即可求出m的值;再用乘以①所占的百分比,计算即可得解;
    (2)先计算出H的值,用总人数减去其他分数段的人数即可;根据平均数的定义求出平均数;众数是一组数据中出现次数最多的数据;找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数进行解答;
    (3)用九年级总学生人数乘以满分的人数所占的分数即可.
    【详解】
    解:(1),即m=10;
    故答案为:10;.
    (2)(人)
    平均数:(分);
    ∵9出现了12次,次数最多,
    ∴众数:9分;
    ∵将40个数字按从小到大排列,中间第20、21两个数都是8,
    ∴中位数:=8(分);
    故答案为:平均数8.3分,众数9分,中位数8分;
    (3)(人)
    故该校理化实验操作得满分的学生有28人.
    本题属于基础题,考查了统计图、扇形统计图、平均数、确定一组数据的中位数和众数的能力.从不同的统计图中得到必要的信息是解题的关键;找中位数的时候一定要注意先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找到中间两位数的平均数.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、乙组
    【解析】
    根据方差的定义,方差越小数据越稳定解答即可.
    【详解】
    解:∵,,,
    ∵最小,
    ∴乙组学生年龄最相近,应选择乙组.
    故答案为:乙组.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    20、-2
    【解析】
    根据分子等于零且分母不等于零列式求解即可.
    【详解】
    解:由分式的值为2,得
    x+2=2且x﹣2≠2.
    解得x=﹣2,
    故答案为:﹣2.
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
    21、1
    【解析】
    利用平行四边形的对角相等、邻角互补可求得答案.
    【详解】
    解:因为四边形ABCD是平行四边形,
    所以∠B=∠D,∠A+∠B=180°.
    因为∠B+∠D=190°,
    所以∠B=95°.
    所以∠A=180°﹣95°=1°.
    故答案为1.
    此题考查平行四边形的性质,解题关键在于掌握其性质定理
    22、(1)、(2)、(4).
    【解析】
    ∵四边形ABCD是正方形,
    ∴AB=AD=CD=BC,∠BAD=∠ADC=90°.
    ∵CE=DF,
    ∴AD-DF=CD-CE,
    即AF=DE.
    在△BAF和△ADE中,

    ∴△BAF≌△ADE(SAS),
    ∴AE=BF,S△BAF=S△ADE,∠ABF=∠DAE,
    ∴S△BAF-S△AOF=S△ADE-S△AOF,
    即S△AOB=S四边形DEOF.
    ∵∠ABF+∠AFB=90°,
    ∴∠EAF+∠AFB=90°,
    ∴∠AOF=90°,
    ∴AE⊥BF;
    连接EF,在Rt△DFE中,∠D=90°,
    ∴EF>DE,
    ∴EF>AF,
    若AO=OE,且AE⊥BF;
    ∴AF=EF,与EF>AF矛盾,
    ∴假设不成立,
    ∴AO≠OE.
    ∴①②④是正确的,
    故答案是:①②④.
    【点睛】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,三角形的面积关系的运用及直角三角形的性质的运用,在解答中求证三角形全等是关键.
    23、<
    【解析】
    根据勾股定理即可得到结论.
    【详解】
    解:点A,B之间的距离d=<1,
    故答案为:<.
    本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(2)(3)或
    【解析】
    (1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.
    (2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.
    (3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.
    【详解】
    (1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,
    ∴AB==10,
    点Q运动到点A时,t==5,
    ∴AP=5,PC=1,
    在Rt△PBC中,PB=.
    (2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.
    ∵四边形PQCE是菱形,
    ∴PC⊥EQ,PK=KC,
    ∵∠QKC=∠QDC=∠DCK=90°,
    ∴四边形QDCK是矩形,
    ∴DQ=CK,
    ∴,
    解得t=.
    ∴t=s时,四边形PQCE是菱形.
    (3)如图2中,当∠APQ=90°时,
    ∵∠APQ=∠C=90°,
    ∴PQ∥BC,
    ∴,
    ∴,
    ∴.
    如图3中,当∠AQP=90°时,
    ∵△AQP∽△ACB,
    ∴,
    ∴,
    ∴,
    综上所述,或s时,△APQ是直角三角形.
    本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.
    25、(1)见解析;(2)见解析;(3)4.
    【解析】
    (1)利用关于y轴对称点的性质得出对应点位置求出即可;
    (2)利用关于原点对称点的性质得出对应点坐标进而求出即可;
    (3)利用相似三角形的判定方法得出即可,再利用三角形面积求法得出答案.
    【详解】
    (1)如图所示:△ABC,即为所求;
    (2)如图所示:△ABC,即为所求;
    (3)∵ ,
    ∴△AAA与△CCC不相似,
    S = ×2×4=4.
    此题考查作图-旋转变换,作图-轴对称变换,相似三角形的判定,解题关键在于掌握作图法则.
    26、 (1)众数162,中位数161.5;(2)161cm;(3).
    【解析】
    (1)根据统计图中的数据可以求得这组数据的中位数和众数;
    (2)根据加权平均数的求法可以解答本题;
    (3)根据题意可以设计出合理的方案,注意本题答案不唯一.
    【详解】
    解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,
    ∴这10名女生的身高的中位数是:cm,众数是162cm,
    即这10名女生的身高的中位数和众数分别是161.5cm、162cm;
    (2)平均身高.
    (3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.
    本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年福建省福州市数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省周口市淮阳县九上数学开学检测试题【含答案】:

    这是一份2024-2025学年河南省周口市淮阳县九上数学开学检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map