2024-2025学年河南省周口市淮阳县九上数学开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )
A.4B.16C.D.4或
2、(4分)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:
①,②,③,④.
其中说法正确的是( )
A.①②B.①②③C.①②④D.①②③④
3、(4分)某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是( )
A.,B.,C.,D.,
4、(4分)一次函数y=—2x+3的图象与两坐标轴的交点是( )
A.(3,1)(1,);B.(1,3)(,1);C.(3,0)(0,) ;D.(0,3)(,0)
5、(4分)下列图形是中心对称图形但不是轴对称图形的是( )
A.菱形B.矩形C.正三角形D.平行四边形
6、(4分)下列关于向量的等式中,不正确的是( )
A.B.C.D.
7、(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。设平均每次降价的百分率为,根据题意所列方程正确的是( )
A.B.C.D.
8、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
A.a2+c2=b2B.c2=2a2C.a=bD.∠C=90°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是
10、(4分)数据 1,2,3,4,5,x 的平均数与众数相等,则 x=_____.
11、(4分)如图是两个一次函数y1=k1x+b1与y2=k2x+b2的图象,已知两个图象交于点A(3,2),当k1x+b1>k2x+b2时,x的取值范围是_____.
12、(4分)一个多边形的内角和等于 1800°,它是______边形.
13、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.
15、(8分)如图,矩形 ABCD 中,AB 4, BC 10, E 在 AD 上,连接 BE, CE, 过点 A 作 AG // CE ,分别交 BC, BE 于点 G, F , 连接 DG 交 CE 于点 H .若 AE 2, 求证:四边形 EFGH 是矩形.
16、(8分)求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:根据题意先画出图形,并写出已知、求证,再证明).
17、(10分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?
18、(10分)如图,在菱形中,,点将对角线三等分,且,连接.
(1)求证:四边形为菱形
(2)求菱形的面积;
(3)若是菱形的边上的点,则满足的点的个数是______个.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:(1)=______;(2)=______;(3) =______.
20、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;
21、(4分)一次函数的图象不经过第_______象限.
22、(4分)如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.
23、(4分)若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
25、(10分)物理兴趣小组20位同学在实验操作中的得分情况如下表:
问:(1)求这20位同学实验操作得分的众数、中位数.
(2)这20位同学实验操作得分的平均分是多少?
(3)将此次操作得分按人数制成如图所示的扇形统计图,扇形①的圆心角度数是多少?
26、(12分)甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:
设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y元.
(1)求y与x之间的函数关系式;
(2)请判断y是否能等于62000,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:当3和5都是直角边时,第三边长为:=;
当5是斜边长时,第三边长为:=1.
故选D.
2、B
【解析】
可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;
根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;
因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;
根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;
而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.
综上所述,这一题的正确答案为B.
3、D
【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:把数据从小到大的顺序排列为:2,1,1,8,10;
在这一组数据中1是出现次数最多的,故众数是1.
处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.
此题考查中位数与众数的意义,掌握基本概念是解决问题的关键
4、D
【解析】
y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D
5、D
【解析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、菱形是中心对称图形,也是轴对称图形,故本选项错误;
B、矩形是中心对称图形,也是轴对称图形,故本选项错误;
C、正三角形不是中心对称图形,是轴对称图形,故本选项错误;
D、平行四边形是中心对称图形但不是轴对称图形,故本选项正确.
故选:D.
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、B
【解析】
根据平面向量的加法法则判定即可.
【详解】
A、,正确,本选项不符合题意;
B、,错误,本选项符合题意;
C、,正确,本选项不符合题意;
D、,正确,本选项不符合题意;
故选B.
本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
7、C
【解析】
试题解析:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),
则列出的方程是36×(1-x)2=1.
故选C.
8、A
【解析】
根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
【详解】
设∠A、∠B、∠C分别为x、x、2x,
则x+x+2x=180°,
解得,x=45°,
∴∠A、∠B、∠C分别为45°、45°、90°,
∴a2+b2=c2,A错误,符合题意,
c2=2a2,B正确,不符合题意;
a=b,C正确,不符合题意;
∠C=90°,D正确,不符合题意;
故选:A.
考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(,0).
【解析】
试题分析:∵正方形的顶点A(m,2),
∴正方形的边长为2,
∴BC=2,
而点E(n,),
∴n=2+m,即E点坐标为(2+m,),
∴k=2•m=(2+m),解得m=1,
∴E点坐标为(3,),
设直线GF的解析式为y=ax+b,
把E(3,),G(0,﹣2)代入得,
解得,
∴直线GF的解析式为y=x﹣2,
当y=0时,x﹣2=0,解得x=,
∴点F的坐标为(,0).
考点:反比例函数与一次函数的交点问题.
10、3
【解析】
根据平均数和众数的概念,可知当平均数与众数相等时,而1,2,3,4,5各不相同,因而x就是众数,也是平均数.则x就是1,2,3,4,5的平均数.
【详解】
平均数与众数相等,则x就是1,2,3,4,5的平均数,所以x==3.
故答案为:3.
本题考查了众数,算术平均数,掌握众数的定义和平均数的公式是解题的关键.
11、x>3
【解析】
观察图象,找出函数y1=k1x+b1的图象在y2=k2x+b2的图象上方时对应的自变量的取值即可得答案.
【详解】
∵一次函数y1=k1x+b1与y2=k2x+b2的两个图象交于点A(3,2),
∴当k1x+b1>k2x+b2时,x的取值范围是x>3,
故答案为:x>3.
本题考查了一次函数与不等式,运用数形结合思想是解本题的关键.
12、十二
【解析】
根据多边形的内角和公式列方程求解即可;
【详解】
设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;
故答案为十二
本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
13、x=1,y=1
【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:函数y=ax+b和y=kx的图象交于点P(1,1)
即x=1,y=1同时满足两个一次函数的解析式.
所以,方程组的解是 ,
故答案为x=1,y=1.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
由平行四边形的性质可知AD=BC,∠DAE=∠BCF,由垂直的定义可知∠DEA=∠BFC=90°,由全等三角形的判定方法可知△AED≌△CFB,进而得到BF=DE.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC,∠DAE=∠BCF,
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEA=∠BFC=90°.
在△AED和△BFC中,
,
∴△AED≌△CFB,
∴BF=DE.
本题考查了平行四边形的性质,以及全等三角形的性质与判定,是中考常见的题目.
15、证明见解析.
【解析】
根据四边形是矩形以及,得到四边形是平行四边形,从而得到四边形是平行四边形,即可得到四边形是平行四边形,再根据勾股定理求出,长,由勾股定理的逆定理得到是直角三角形,即可得正.
【详解】
四边形是矩形,
,,
,
四边形是平行四边形,
,
,
四边形是平行四边形,
,
四边形是平行四边形,
,,
,,
,
是直角三角形,
,
四边形是矩形.
本题考查了矩形的判定与性质、平行四边形的判定与性质、勾股定理以及勾股定理的逆定理的运用,解题的关键是掌握这些性质.
16、见解析
【解析】
分别作出AB、AC的垂直平分线,得到点M,N,根据全等三角形的性质、平行四边形的判定和性质证明结论.
【详解】
如图,点M,N即为所求作的点,
已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,
求证:MN∥BC,MN=BC
证明:延长MN至点D,使得MN=ND,连接CD,
在△AMN和△CDN中,
,
∴△AMN≌△CDN(SAS)
∴∠AMN=∠D,AM=CD,
∴AM∥CD,即BM∥CD,
∵AM=BM=CD,
∴四边形BMDC为平行四边形,
∴MN∥BC,MD=BC,
∵MN=MD,
∴MN=BC.
本题考查的是三角形中位线定理、平行四边形的判定定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
17、改进设备后平均每天耗煤1.5吨.
【解析】
设改进后评价每天x吨,根据题意列出分式方程即可求解.
【详解】
解:设改进后评价每天x吨,
,
解得x=1.5.
经检验,x=1.5是此分式方程的解.故
故改进设备后平均每天耗煤1.5吨.
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行求解.
18、(1)见解析;(2);(3)1
【解析】
(1)根据题意证明△AED≌△AEB≌△CFD≌△CFB,得到四边相等即可证明是菱形;
(2)求出菱形的对角线的长,利用菱形的面积等于对角线乘积的一半解决问题即可.
(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.求出PE+PF的最值,判断出在线段AD上存在两个点P满足条件,由此即可判断.
【详解】
(1)∵四边形ABCD是菱形,
∴AD≡AB=CD=CB,∠DAE=∠BAE=∠DCF=∠BCF,
∴△AED≌△AEB≌△CFD≌△CFB(SAS)
∴DE=BE=DF=BF,
∴四边形DEBF为菱形.
(2)连接DB,交AC于O,
∵四边形ABCD是菱形,
∴DB⊥AC,,
又∵AE=EF=FC=2,
∴AO=3,AD=2DO,
∴,∴,
∴
(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.
易知PE+PF的最小值=2
当点P由A运动到D时,PE+PF的值由最大值6减小到2再增加到4,
∵PE+PE=,2<<4,
∴线段AD上存在两个点P,满足PE+PF=
∴根据对称性可知:菱形ABCD的边上的存在1个点P满足条件.
故答案为1.
本题考查菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的乘法公式:和除法公式计算即可.
【详解】
解:(1);
(2);
(3).
故答案为:;;.
此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
20、
【解析】
首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.
解:解关于x不等式得,
∵关于x不等式有实数解,
∴
解得a<1.
∴使关于x不等式有实数解的概率为.
故答案为
“点睛”本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,期中事件A出现m种结果,那么事件A的概率P(A)=.
21、三
【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.
【详解】
因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.
故答案为:第三象限.
22、 (x<0)
【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB=3,
∵
∴|k|=3,
∵k<0,
∴k=-1.
∴反比例函数的解析式为 (x<0)
故答案为: (x<0).
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
23、﹣1<m<
【解析】
根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【详解】
解:由一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,知
m+1>0,且2m﹣3<0,
解得,﹣1<m<.
故答案为:﹣1<m<.
本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.
二、解答题(本大题共3个小题,共30分)
24、y=x+
【解析】
试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
∴k=
∴y与x的函数关系式为.
考点:待定系数法求一次函数解析式.
25、(1)众数:9,中位数:9;
(2)这20位同学实验操作得分的平均分为:;
(3)扇形①的圆心角度数是:(1-20%-25%-40%)×360°=54°.
【解析】
(1)得9分的有8人,频数最多;20个数据的中位数是第10个和第11个同学的得分的平均数;
(2)平均分=总分数÷总人数;
(3)扇形①的圆心角=百分比×360°
26、 (1) ;(2) 不能等于.
【解析】
(1)根据A工地成本=甲在A的成本+乙在A的成本;B工地成本=甲在B的成本+乙在B的成本;总成本=A工地成本+ B工地成本.列出方程解出即可.
(2)把y=62000代入(1)中求出x,对比已知条件的范围即能得出答案;
【详解】
解:(1)
.
(2)当,解得,
∵,∴不符合题意,
∴不能等于.
本题考查用方程的知识解决工程问题的应用题,解题的关键是学会利用未知数,构建方程解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
A工地
B工地
甲工程队
800元
750元
乙工程队
600元
570元
2024-2025学年河南省周口市西华县数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年河南省周口市西华县数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省周口市第十初级中学九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年河南省周口市第十初级中学九上数学开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。