2024年广东省深圳市福田区上步中学九年级数学第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC中,D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为( )
A.2.5B.2C.1.5D.1
2、(4分)□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A.BE=DFB.AE=CFC.AF//CED.∠BAE=∠DCF
3、(4分)若a>b,则下列各式不成立的是( )
A.a﹣1>b﹣2B.5a>5bC.﹣a>﹣bD.a﹣b>0
4、(4分)平行四边形两个内角的度数的比是1:2,则其中较小的内角是( )
A.B.C.D.
5、(4分)在一次科技作品制作比赛中,某小组8件作品的成绩(单位:分)分别是:7、10、9、8、7、9、9、8,对这组数据,下列说法正确的是( )
A.众数是9B.中位数是8C.平均数是8D.方差是7
6、(4分)下列各组线段中,不能够组成直角三角形的是( )
A.6,8,10B.3,4,5C.4,5,6D.5,12,13
7、(4分)如图, 中, ,,则的度数为( )
A.B.C.D.
8、(4分)如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为( )
A.2B.6C.3或6D.2或3或6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数的图像与如图所示,则k=__________.
10、(4分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为 .
11、(4分)不等式的正整数解是______.
12、(4分)正方形中,点是对角线上一动点,过作的垂线交射线于,连接,,则的值为________.
13、(4分)如图,一次函数y=6﹣x与正比例函数y=kx的图象如图所示,则k的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:
九(1)班:88,91,92,93,93,93,94,98,98,100;
九(2)班:89,93,93,93,95,96,96,98,98,1.
通过整理,得到数据分析表如下:
(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;
(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.
15、(8分)解分式方程
(1) (2)
16、(8分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等
(1)求A、B两种零件的单价;
(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?
17、(10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.
(1)求甲行走的速度;
(2)在坐标系中,补画s关于t的函数图象的其余部分;
(3)问甲、乙两人何时相距360米?
18、(10分)如图,的对角线,相交于点,过点且与,分别相交于点,.求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数的自变量的取值范围是.
20、(4分)在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____
21、(4分)把化为最简二次根式,结果是_________.
22、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.
23、(4分)关于一元二次方程的一个根为,则另一个根为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):
(1)根据图a数据填充表格b所缺的数据;
(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.
25、(10分)如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.
(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,
①求证:△ACD≌△BCF;
②若∠DCE=45°, 求证:DE2=AD2+BE2;
(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.
26、(12分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用三角形中位线定理得到DE= BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可.
【详解】
解:∵DE是△ABC的中位线,
∴DE=BC=1.
∵∠AFB=90°,D是AB的中点,
∴DF=AB=2.2,
∴EF=DE-DF=1-2.2=1.2.
故选:C.
本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.
2、B
【解析】
【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;
B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;
C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
∵AF//CE,∴∠FAO=∠ECO,
又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
∴AF CE,∴四边形AECF是平行四边形,故不符合题意;
D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
∴∠ABE=∠CDF,
又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
∴AE//CF,
∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
故选B.
【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
3、C
【解析】
根据不等式的性质,可得答案.
【详解】
解:A、a−1>a−2>b−2,故A成立,故A不符合题意;
B、5a>5b,故B成立,故B不符合题意;
C、两边都乘,不等号的方向改变,﹣a﹣b, 故C不成立,故C符合题意,
D、两边都减b,a﹣b>0,故D成立,故D不符合题意;
故选C.
本题考查了不等式的性质,熟记不等式的性质是解题关键.
4、C
【解析】
根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,故该平行四边形的四个角的比值为1:2:1:2,所以可以计算出平行四边形的各个角的度数.
【详解】
根据平行四边形的相邻的两个内角互补知,设较小的内角的度数为x,
则有:x+2x=180°
∴x=60°,
即较小的内角是60°
故选C.
此题考查平行四边形的性质,解题关键在于设较小的内角的度数为x
5、A
【解析】
根据众数、中位数、平均数、方差的计算方法计算即可.
【详解】
解:8件作品的成绩(单位:分)按从小到大的顺序排列为:7、7、8、8、9、9、9、10,
9出现了3次,次数最多,故众数为9,
中位数为(8+9)÷2=8.5,
平均数=(7×2+8×2+9×3+10)÷8=8.375,
方差S2=[2×(7-8.375)2+2×(8-8.375)2+3×(9-8.375)2+(10-8.375)2]=0.1.
所以A正确,B、C、D均错误.
故选A.
本题考查了平均数,中位数,众数与方差的求法.平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是用来衡量一组数据波动大小的量.
6、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
【详解】
A. 6+8=10,能构成直角三角形,故不符合题意;
B. 3+4=5,能构成直角三角形,故不符合题意;
C. 4+5≠6,不能构成直角三角形,故符合题意;
D. 5+12=13,能构成直角三角形,故不符合题意.
故选C.
此题考查勾股定理的逆定理,解题关键在于掌握运算公式.
7、B
【解析】
设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.
【详解】
解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
∴∠B+19°=x+14°,
∴∠B=x-5°,
∵AB=AC,
∴∠C=∠B=x-5°,
∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
∵AD=DE,
∴∠DEA=∠DAE=x+9°,
在△ADE中,由三角形内角和定理可得
x+ x+9°+ x+9°=180°,
解得x=54°,即∠ADE=54°,
∴∠DAE=63°
故选:B.
本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.
8、C
【解析】
分以下两种情况求解:①当点B′落在矩形内部时,连接AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△B′EC为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时.此时四边形ABEB′为正方形,求出BE的长即可.
【详解】
解:当△B′EC为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC==10,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△B′EC为直角三角形时,得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,
∴EB=EB′,AB=AB′=1,
∴CB′=10﹣1=4,
设BE=x,则EB′=x,CE=8﹣x,
在Rt△B′EC中,
∵EB′2+CB′2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②当点B′落在AD边上时,如图2所示.
此时ABEB′为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故选:C.
本题考查了折叠变换的性质、直角三角形的性质、矩形的性质,正方形的判定等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.
【详解】
∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,
∴4=2x,
解得:x=2,
∴交点坐标为(2,4),
代入y=6-kx,6-2k=4,解得k=1.
故答案为:1.
本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.
10、1.
【解析】
试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
则AD=1,BF=BC+CF=BC+1,DF=AC,
又∵AB+BC+AC=1,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
考点:平移的性质.
11、1和2.
【解析】
先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.
【详解】
去分母得,2(x+4) >3(3x−1)-6,
去括号得,2x+8>9x-3-6,
移项得,2x−9x>-3-6−8,
合并同类项得,−7x>−17,
把x的系数化为1得,x< .
故它的正整数解为:1和2.
此题考查解一元一次不等式,一元一次不等式的整数解,解题关键在于掌握运算法则
12、
【解析】
如图,连接PC.首先证明PA=PC,利用相似三角形的性质即可解决问题.
【详解】
解:如图,连接PC.
∵四边形ABCD是正方形,
∴点A,点C关于BD对称,∠CBD=∠CDB=45°,
∴PA=PC,
∵PE⊥BD,
∴∠DPE=∠DCB=90°,
∴∠DEP=∠DBC=45°,
∴△DPE∽△DCB,
∴,
∴,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴,
∴BE:PA=,
故答案为.
本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13、1
【解析】
将点A的横坐标代入y=6﹣x可得其纵坐标的值,再将所得点A坐标代入y=kx可得k.
【详解】
解:设A(1,m).
把A (1,m)代入y=6﹣x得:m=﹣1+6=4,
把A (1,4)代入y=kx得4=1k,解得k=1.
故答案是:1.
本题主要考查两条直线相交或平行问题,解题的关键是熟练掌握待定系数法求函数解析式.
三、解答题(本大题共5个小题,共48分)
14、 (1) 94,92.2,93;(2)见解析;(3)92.2.
【解析】
(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;
(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;
(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.
【详解】
解:(1)九(1)班的平均分=
=94,
九(2)班的中位数为(96+92)÷2=92.2,
九(2)班的众数为93,
故答案为:94,92.2,93;
(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;
(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,
故答案为92.2.
本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.
15、(1) ;(2)原分式方程无解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:(1)原分式方程左右两边同时乘以 得
去括号得
移次并合并同类项得
系次化为1得
检验,当 时,
∴ 是原分式方程的解
(2)原分式方程左右两边同时乘以 得
去括号得
移次并合并同类项得
系次化为1得
检验,当 时,
∴ 是原分式方程的增根
∴原分式方程无解
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
16、(1)A种零件的单价为1元,B种零件的单价为60元;(2)最多购进A种零件2件.
【解析】
(1)设A种零件的单价是x元,则B种零件的单价是(x-20)元,根据“用10元购买A种零件的数量和用600元购买B种零件的数量相等”列出方程并解答;
(2)设购买A种零件a件,则购买B种零件(200-a)件,根据“购买两种零件的总费用不超过14700元”列出不等式并解答.
【详解】
解:(1)设B种零件的单价为x元,则A零件的单价为(x+20)元,
则
解得:x=60
经检验:x=60 是原分式方程的解, x+20=1.
答:A种零件的单价为1元,B种零件的单价为60元.
(2)设购进A种零件m件,则购进B种零件(200﹣m)件,则有
1m+60(200﹣m)≤14700,
解得:m≤2,
m在取值范围内,取最大正整数, m=2.
答:最多购进A种零件2件.
考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
17、(1)30米/分;(2)见解析;(3)当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.
【解析】
(1)由图象可知t=5时,s=11米,根据速度=路程÷时间,即可解答;
(2)根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,甲到达图书馆还需时间;41÷30=15(分),所以35+15=1(分),所以当s=0时,横轴上对应的时间为1.
(3)分别求出当12.5≤t≤35时和当35<t≤1时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可.
【详解】
(1)甲行走的速度:11÷5=30(米/分);
(2)当t=35时,甲行走的路程为:30×35=101(米),乙行走的路程为:(35-5)×1=110(米),
∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,
∴甲到达图书馆还需时间;41÷30=15(分),
∴35+15=1(分),
∴当s=0时,横轴上对应的时间为1.
补画的图象如图所示(横轴上对应的时间为1),
(3)如图,
设乙出发经过x分和甲第一次相遇,根据题意得:11+30x=1x,
解得:x=7.5,
7.5+5=12.5(分),
由函数图象可知,当t=12.5时,s=0,
∴点B的坐标为(12.5,0),
当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),
把C(35,41),B(12.5,0)代入可得:
解得:,
∴s=20t-21,
当35<t≤1时,设CD的解析式为s=k1x+b1,(k1≠0),
把D(1,0),C(35,41)代入得:
解得:
∴s=-30t+110,
∵甲、乙两人相距360米,即s=360,
解得:t1=30.5,t2=38,
∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.
本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,解答时求出函数的解析式是关键.
18、见解析.
【解析】
根据“ASA”证明,即可证明.
【详解】
证明:四边形是平行四边形,
,.
.
在和,
,
,
.
本题考查了平行四边形的性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≠1
【解析】
该题考查分式方程的有关概念
根据分式的分母不为0可得
X-1≠0,即x≠1
那么函数y=的自变量的取值范围是x≠1
20、(2,1)
【解析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
【详解】
点P(2,﹣1)关于x轴的对称点的坐标是(2,1),
故答案为:2,1.
本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.
21、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
.
故答案为.
本题考查了二次根式的性质与化简,正确开平方是解题的关键.
22、6cm
【解析】
根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.
【详解】
解::如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB.
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.
本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.
23、1
【解析】
利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.
【详解】
∵a=1,b=m,c=-1,
∴x1•x2==-1.
∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
∴另一个根为-1÷(-1)=1.
故答案为:1.
此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)月销售额定为8.5万合适,见解析.
【解析】
(1)众数就是出现次数最多的数,据此即可求解;中位数就是大小处于中间位置的数,根据定义即可求解;
(2)利用中位数的意义进行回答.
【详解】
(1)A店的中位数为8.5,众数为8.5;
B店的平均数为:.
故答案为:8.5;8.5;8.5;
(2)如果A店想让一半以上的销售员达到销售目标,我认为月销售额定为8.5万合适.
因为中位数为8.5,所以月销售额定为8.5万,有一半左右的营业员能达到销售目标.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
25、(1)①详见解析;②详见解析;(2)DE2= EB2+AD2+EB·AD,证明详见解析
【解析】
(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;
②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD≌△BCF
②证明:连接EF,
由①知△ACD≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD
∴∠EBF=90°
∴EF2=BE2+BF2,
∴EF2=BE2+AD2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF,CE=CE
∴△DCE≌△FCE
∴EF=DE
∴DE2= AD2+BE2
⑵DE2= EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=BF,FG=BF
∵∠ACB=60°,∠DCE=30°,
∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°
∵CD=CF,CE=CE
∴△ECF≌△ECD
∴EF=ED
在Rt△EFG中,EF2=FG2+EG2
又∵EG=EB+BG
∴EG=EB+BF,
∴EF2=(EB+BF)2+(BF)2
∴DE2= (EB+AD)2+(AD)2
∴DE2= EB2+AD2+EB·AD
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.
26、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
题号
一
二
三
四
五
总分
得分
班级
最高分
平均分
中位数
众数
方差
九(1)班
100
m
93
93
12
九(2)班
1
95
n
p
8.4
平均数
中位数
众数
A店
8.5
B店
8
10
2024年广东省深圳市福田区十校联考九上数学开学监测模拟试题【含答案】: 这是一份2024年广东省深圳市福田区十校联考九上数学开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省深圳市福田区红岭中学数学九上开学预测试题【含答案】: 这是一份2024年广东省深圳市福田区红岭中学数学九上开学预测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。