终身会员
搜索
    上传资料 赚现金

    2024年广东省深圳市宝安区数学九年级第一学期开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    2024年广东省深圳市宝安区数学九年级第一学期开学学业质量监测试题【含答案】第1页
    2024年广东省深圳市宝安区数学九年级第一学期开学学业质量监测试题【含答案】第2页
    2024年广东省深圳市宝安区数学九年级第一学期开学学业质量监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广东省深圳市宝安区数学九年级第一学期开学学业质量监测试题【含答案】

    展开

    这是一份2024年广东省深圳市宝安区数学九年级第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不等式 的解集为( ).
    A.B.C.D.
    2、(4分)若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则( )
    A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
    3、(4分)一次函数y=kx-k(k<0)的图象大致是( )
    A.B.C.D.
    4、(4分)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
    甲:8、7、9、8、8
    乙:7、9、6、9、9
    则下列说法中错误的是( )
    A.甲、乙得分的平均数都是8
    B.甲得分的众数是8,乙得分的众数是9
    C.甲得分的中位数是9,乙得分的中位数是6
    D.甲得分的方差比乙得分的方差小
    5、(4分)某铁工艺品商城某天销售了110件工艺品,其统计如表:
    该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是( )
    A.平均数B.众数C.中位数D.方差
    6、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
    A.50,20B.50,30C.50,50D.1,50
    7、(4分)下列多项式中不能用公式进行因式分解的是( )
    A.a2+a+B.a2+b2-2abC.D.
    8、(4分)用配方法解方程,方程可变形为( )
    A.x  12 4B.x  12  4C.x  12  2D.x  12 2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、4,则原直角三角形纸片的斜边长是 .
    10、(4分)若是一个正整数,则正整数m的最小值是___________.
    11、(4分)如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.
    12、(4分)若一组数据的平均数,方差,则数据,,的方差是_________.
    13、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).
    (1)画△A1B1C1,使它与△ABC关于点C成中心对称;
    (2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;
    (3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.
    15、(8分)计算:(1) (2)
    16、(8分)如图,在中,,于点,,.点从点出发,在线段上以每秒的速度向点匀速运动;与此同时,垂直于的直线从底边出发,以每秒的速度沿方向匀速平移,分别交、、于点、、,当点到达点时,点与直线同时停止运动,设运动时间为秒().
    (1)当时,连接、,求证:四边形为菱形;
    (2)当时,求的面积;
    (3)是否存在某一时刻,使为以点或为直角顶点的直角三角形?若存在,请求出此时刻的值;若不存在,请说明理由.
    17、(10分)小明和小兵两人参加体育项目训练,近期的5次测试成绩如下表所示:
    根据以上信息,解决以下问题:
    (1)小明成绩的中位数是__________.
    (2)小兵成绩的平均数是__________.
    (3)为了比较他俩谁的成绩更稳定,老师利用方差公式计算出小明的方差如下(其中表示小明的平均成绩);
    请你帮老师求出小兵的方差,并比较谁的成绩更稳定。
    18、(10分)如图,△ABC全等于△DEF,点B,E,C,F在同一直线,连接AD,求证:四边形ABED是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC= .
    20、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____(从“众数、方差、平均数、中位数”中填答案)
    21、(4分)如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在轴上,且CF=2OC-3,反比例函数y= (k>0)的图象经过点B,E,则点E的坐标是____
    22、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.
    23、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分) 写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)
    (1)y随x的增大而减小;(2)图象经过点(1,﹣2).
    25、(10分)如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE
    (1)求证:四边形BDEF是平行四边形
    (2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论
    26、(12分)某校八年级一班20名女生某次体育测试的成绩统计如下:
    (1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;
    (2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先移项,再系数化为1即可得到不等式的解集.
    【详解】
    解:移项得:
    合并同类项得:
    系数化为1得:
    故选:B
    本题考查了一元一次不等式的解法,熟练掌握计算法则是关键,当两边除以负数时,要注意不等号的方向要改变.
    2、B
    【解析】
    分别求出a、b、c、d的值,然后进行比较大小进行排序即可.
    【详解】
    解:a=﹣0.32=﹣0.09,
    b=﹣3﹣2=﹣,
    c=(﹣)﹣2=9,
    d=(﹣)0=1.
    故b<a<d<c.
    故选B.
    本题考查了幂运算法则,准确计算是解题的关键.
    3、A
    【解析】
    试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.
    解:∵k<0,
    ∴﹣k>0,
    ∴一次函数y=kx﹣k的图象经过第一、二、四象限,
    故选A.
    考点:一次函数的图象.
    4、C
    【解析】
    分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.
    【详解】
    选项A,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;
    选项B,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;
    选项C,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;
    选项D,×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]= ×8=1.6,所以,故D正确;
    故答案选C.
    考点:算术平均数;中位数;众数;方差.
    5、B
    【解析】
    根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.
    【详解】
    由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.
    故选:B.
    本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键.
    6、C
    【解析】
    根据众数和中位数的定义进行计算即可.
    【详解】
    众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
    将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
    故选:C.
    本题考查众数和中位数,明确众数和中位数的概念是关键.
    7、D
    【解析】
    【分析】A.B可以用完全平方公式;
    C.可以用完全平方公式;
    D. 不能用公式进行因式分解.
    【详解】A. ,用完全平方公式;
    B.,用完全平方公式;
    C. ,用平方差公式;
    D. 不能用公式.
    故正确选项为D.
    【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.
    8、B
    【解析】
    将的常数项变号后移项到方程右边,然后方程两边都加上,方程左边利用完全平方公式变形后,即可得到结果.
    【详解】

    移项得:,
    两边加上得:,
    变形得:,
    则原方程利用配方法变形为.
    故选.
    此题考查了利用配方法解一元二次方程,利用此方法的步骤为:1、将二次项系数化为“”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方,方程左边利用完全平方公式变形,方程右边为非负常数;4、开方转化为两个一元一次方程来求解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2或10.
    【解析】
    试题分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
    试题解析:①如图:
    因为CD=,
    点D是斜边AB的中点,
    所以AB=2CD=2,
    ②如图:
    因为CE=
    点E是斜边AB的中点,
    所以AB=2CE=10,
    综上所述,原直角三角形纸片的斜边长是2或10.
    考点:1.勾股定理;2.直角三角形斜边上的中线;3.直角梯形.
    10、5
    【解析】
    由于是一个正整数,所以根据题意,也是一个正整数,故可得出m的值.
    【详解】
    解:∵是一个正整数,
    ∴根据题意,是一个最小的完全平方数,
    ∴m=5,故答案为5.
    本题主要考查了二次根式的定义,正确对二次根式进行化简并找到被开方数是解答本题的关键.
    11、3
    【解析】
    在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.
    【详解】
    在Rt△ABC中,
    ∵AC=6,BC=8,
    ∴AB==10,
    ∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,
    ∴AE=AC=6,DE=DC,∠AED=∠C=90°,
    ∴BE=AB-AE=10-6=4,
    设CD=x,则BD=8-x,
    在Rt△BDE中,
    ∵BE2+DE2=BD2,
    ∴42+x2=(8-x)2,解得x=3,
    即CD的长为3cm.
    故答案为3
    本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    12、
    【解析】
    根据题意,由平均数的公式和方差公式可知,新数据的平均数为6
    【详解】
    解:∵,
    ∴,
    ∵,


    故答案为:3.
    本题考查了平均数和方差的计算,解题的关键是熟练掌握求平均数和方差的方法.
    13、(3+,)或(-3+,)
    【解析】
    根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
    【详解】
    如图,
    设A(m,m)(m>0),如图所示,
    ∴点B的纵坐标为m,
    ∵点B在双曲线y=上,
    ∴,
    ∴x=,
    ∵AB=6,
    即|m-|=6,
    ∴m-=6或-m=6,
    ∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
    ∴B(3+,)或(-3+,),
    故答案为:(3+,)或(-3+,).
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析;(3)P(﹣1,2)
    【解析】
    (1)分别作出,,的对应点,,,顺次连接即可.
    (2)分别求出,,的对应点,,顺次连接即可.
    (3)利用旋转对称图形得出对应点的连线的交点进而得出答案..
    【详解】
    解:(1)如图所示,△即为所求.
    (2)如图所示,△即为所求.
    (3).
    理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,
    ∴P点是B1B2的中点,
    又∵B1B2的坐标为(4,2)、(-6,2),
    ∴P坐标为(-1,2).
    本题考查作图旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.
    15、(1)14;(2)
    【解析】
    (1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.
    (2)根据多项式乘以多项式的运算法则计算即可.
    【详解】
    解:(1)原式=
    =
    =14
    (2)原式=
    =
    本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.
    16、(1)见解析;(2);(3)存在以点为直角顶点的直角三角形.此时,.
    【解析】
    (1)根据菱形的判定定理即可求解;
    (2)由(1)知,故,故 ,可求得,
    , 再根据三角形的面积公式即可求解;
    (3)根据题意分①若点为直角顶点, ②若点为直角顶点, 根据相似三角形的性质即可求解.
    【详解】
    (1)证明:如图1,当时,,
    则为的中点,又∵,
    ∴为的垂直平分线,∴,.
    ∵,∴.
    ∵,∴,,
    ∴,∴,
    ∴,即四边形为菱形.
    (2)如图2,由(1)知,
    ∴,
    ∴,即,解得:,


    (3)①若点为直角顶点,如图3①,
    此时,,.
    ∵,∴,
    即:,此比例式不成立,故不存在以点为直角顶点的直角三角形;
    ②若点为直角顶点,如图3②,
    此时,,,.
    ∵,∴,即:,
    解得.故存在以点为直角顶点的直角三角形.此时,.
    【点睛】此题主要考查三角形的动点问题,解题的关键是熟知相似三角形的判定与性质.
    17、(1)13;(2)12.4; (3)3.04,小明的成绩更稳定。
    【解析】
    (1)按大小顺序排列这组数据,中间一个数或两个数的平均数即为这组数据的中位数;
    (2)利用平均数的计算公式直接计算即可得出答案;
    (3)利用方差的计算公式求出小兵的方差,然后根据方差的大小可得出结论。
    【详解】
    (1)按大小顺序排列小明的成绩,中间数为13,所以小明成绩的中位数是13.
    故答案为:13
    (2)小兵成绩的平均数:
    故答案为:12.4
    (3)解:
    即:
    小明的成绩更稳定。
    本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    18、见解析
    【解析】
    根据全等三角形的性质得到AB∥DE且AB=DE,即可证明四边形ABED是平行四边形.
    【详解】
    ∵△ABC≌△DEF
    ∴∠B=∠DEF,AB=DE
    ∴AB∥DE.
    ∴AB=DE,AB∥DE
    ∴四边形ABED是平行四边形.
    此题主要考查平行四边形的判定,解题的关键是熟知全等三角形的性质及平行四边形的判定定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1+
    【解析】
    分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.
    详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
    ∴∠B=∠BAD,
    ∴BD=AD=,
    ∵∠C=90°,
    ∴CD===1,
    ∴BC=+1.
    故答案为.
    点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    20、中位数
    【解析】
    9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故答案为:中位数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    21、
    【解析】
    设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为( ,3a-3),根据5CD=3CB,可求出点E的坐标
    【详解】
    由题意可设:正方形OABC的边OA=a
    ∴OA= OC=AB= CB
    ∴点B的坐标为(a,a),即k=a
    CF=2OC-3
    ∴CF=2a-3
    ∵OF=OC+CF=a+2a-3=3a-3
    ∴点E的纵坐标为3a-3
    将3a-3代入反比例函数解析式y= 中,可得点E的横坐标为
    ∵四边形CDEF为矩形,
    ∴CD=EF=
    5CD=3CB
    =3a,可求得:a=
    将a=,代入点E的坐标为( ,3a-3),
    可得:E的坐标为
    故答案为:
    本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键
    22、2.5
    【解析】
    ∵EO是AC的垂直平分线,
    ∴AE=CE,
    设CE=x,则ED=AD-AE=4-x,
    在Rt△CDE中,CE2=CD2+ED2,
    即x2=22+(4-x)2,
    解得x=2.5,
    即CE的长为2.5,
    故答案为2.5.
    23、1
    【解析】
    由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,
    ∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
    ∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
    ∴AO'=AC+O'C=6,
    ∴AB'=;
    故答案为1.
    此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.
    二、解答题(本大题共3个小题,共30分)
    24、y=-x-1
    【解析】
    试题分析:当y随着x的增大而减小时,则k<0,则本题我们可以设一次函数的解析式为:y=-x+b,然后将点(1,-2)代入求出b的值.
    考点:函数图象的性质
    25、(1)见解析;(2),理由见解析
    【解析】
    (1)延长CE交AB于点G,证明,得E为中点,通过中位线证明DEAB,结合BF=DE,证明BDEF是平行四边形
    (2)通过BDEF为平行四边形,证得BF=DE=BG,再根据,得AC=AG,用AB-AG=BG,可证
    【详解】
    (1)证明:延长CE交AB于点G
    ∵AECE

    在和

    ∴GE=EC
    ∵BD=CD
    ∴DE为的中位线
    ∴DEAB
    ∵DE=BF
    ∴四边形BDEF是平行四边形
    (2)
    理由如下:
    ∵四边形BDEF是平行四边形
    ∴BF=DE
    ∵D,E分别是BC,GC的中点
    ∴BF=DE=BG

    ∴AG=AC
    BF=(AB-AG)=(AB-AC).
    本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.
    26、 (1) x=5,y=7;(1)1.
    【解析】
    试题分析:(1)根据加权平均数的计算方法列式求出x、y的关系式,再根据x、y都是整数进行求解即可;
    (1)先根据众数与中位数的概念确定出a、b的值,再代入代数式进行二次根式的化简即可求解.
    试题解析:解:(1)平均数==81,整理得,8x+9y=103,∵x、y都是整数,∴x=5,y=7;
    (1)∵90分的有7人,最多,∴众数a=90,按照成绩从低到高,第十个同学的成绩是80分,第十一个同学的成绩是80分,(80+80)÷1=80,∴中位数b=80,∴===1.
    点睛:本题考查了加权平均数,众数与中位数的概念,本题根据x、y都是整数并求出其值是解题的关键.
    题号





    总分
    得分
    货种
    A
    B
    C
    D
    E
    销售量(件)
    10
    40
    30
    10
    20
    1次
    2次
    3次
    4次
    5次
    小明
    10
    14
    13
    12
    13
    小兵
    11
    11
    15
    14
    11
    成绩(分)
    60
    70
    80
    90
    100
    人数(人)
    1
    5
    x
    y
    2

    相关试卷

    2024年广东省江门二中学九年级数学第一学期开学学业质量监测试题【含答案】:

    这是一份2024年广东省江门二中学九年级数学第一学期开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省中学山市溪角初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省中学山市溪角初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省深圳市福田区八校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map