![2024年广东省广州市玉岩中学数学九年级第一学期开学学业水平测试试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16201301/0-1727516807069/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省广州市玉岩中学数学九年级第一学期开学学业水平测试试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16201301/0-1727516807116/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省广州市玉岩中学数学九年级第一学期开学学业水平测试试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16201301/0-1727516807143/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广东省广州市玉岩中学数学九年级第一学期开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是( )
A.50°B.60°C.40°D.30°
2、(4分)正六边形的外角和为( )
A.180°B.360°C.540°D.720°
3、(4分)若(x﹣2)x=1,则x的值是( )
A.0B.1C.3D.0或3
4、(4分)如图,被笑脸盖住的点的坐标可能是( )
A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)
5、(4分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美B.中华游C.爱我中华D.美我中华
6、(4分)下列计算正确的是( )
A.×=4B.+=C.÷=2D.=﹣15
7、(4分)如图,中,,AD平分,点E为AC的中点,连接DE,若的周长为26,则BC的长为
A.20B.16C.10D.8
8、(4分)使代数式有意义的x的取值范围是( )
A.x≥0B.C.x取一切实数D.x≥0且
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当m=____时,关于x的分式方程无解.
10、(4分)若关于的分式方程有增根,则的值为__________.
11、(4分)已知为分式方程,有增根,则_____.
12、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
13、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.
15、(8分)(1)已知x=+1,y=-1,求x2+y2的值.
(2)解一元二次方程:3x2+2x﹣2=1.
16、(8分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
(1)如图,求证:矩形是正方形;
(2)当线段与正方形的某条边的夹角是时,求的度数.
17、(10分)计算:(1)
(2)已知,试求以a、b、c为三边的三角形的面积.
18、(10分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成,,,四组,并绘制了统计图(部分).
组:组:组:组:
请根据上述信息解答下列问题:
(1)组的人数是 ;
(2)本次调查数据的中位数落在 组内;
(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.
20、(4分)在五边形中,若,则__________.
21、(4分)若不等式组的解集是,那么m的取值范围是______.
22、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
23、(4分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,,,点、分别在,上,连接.
(1)将沿折叠,使点落在边上的点处,如图1,若,求的长;
(2)将沿折叠,使点落在边上的点处,如图2,若.
①求的长;
②求四边形的面积;
(3)若点在射线上,点在边上,点关于所在直线的对称点为点,问:是否存在以、为对边的平行四边形,若存在,求出的长;若不存在,请说明理由.
25、(10分)如图,已知在四边形中,于,于,,,求证:四边形是平行四边形.
26、(12分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:
(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;
(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.
【详解】
解:∵将△OAB绕点O逆时针旋转80°
∴∠A=∠C,∠AOC=80°
∴∠DOC=80°﹣α
∵∠A=2∠D=100°
∴∠D=50°
∵∠C+∠D+∠DOC=180°
∴100°+50°+80°﹣α=180° 解得α=50°
故选:A.
本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.
2、B
【解析】
由多边形的外角和等于360°,即可求得六边形的外角和.
【详解】
解:∵多边形的外角和等于360°,
∴六边形的外角和为360°.
故选:B.
此题考查了多边形的内角和与外角和的知识.解题时注意:多边形的外角和等于360度.
3、D
【解析】
根据零指数幂的性质解答即可.
【详解】
解:∵(x﹣2)x=1,
∴x﹣2=1或x=0,解答x=3或x=0,
故选D.
本题考查了零指数幂的性质,熟记零指数幂的性质是解题的关键.
4、C
【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
【详解】
由图可知,被笑脸盖住的点在第三象限,
(3,2),(-3,2),(-3,-2),(3,-2)四个点只有(-3,-2)在第三象限.
故选C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、C
【解析】
将原式进行因式分解即可求出答案.
【详解】
解:原式=(x2-y2)(a2-b2)=(x-y)(x+y)(a-b)(a+b)
由条件可知,(x-y)(x+y)(a-b)(a+b)可表示为“爱我中华”
故选C.
本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.
6、C
【解析】
试题分析:A、,故A选项错误;
B、+不能合并,故B选项错误;
C、.故C选项正确;
D、=15,故D选项错误.
故选C.
考点:1.二次根式的乘除法;2.二次根式的性质与化简;3.二次根式的加减法.
7、A
【解析】
根据等腰三角形的性质可得,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.
【详解】
,AD平分,
,
,
点E为AC的中点,
.
的周长为26,
,
.
故选A.
此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
8、D
【解析】
试题分析:根据题意可得:当x≥0且3x﹣1≠0时,代数式有意义,
解得:x≥0且.故选D.
考点:1.二次根式有意义的条件;2.分式有意义的条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-6
【解析】
把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.
10、
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-1)(x+1)=0,得到x=1或-1,然后代入化为整式方程的方程,满足即可.
【详解】
方程两边都乘(x-5),
得1-a=x-5,
∴x=7-a
∵原方程有增根,
∴最简公分母x-5=0,
解得x=5,
∴7-a=5;
∴a=1.
故答案为:1.
本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:
①让最简公分母为0确定可能的增根;
②化分式方程为整式方程;
③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.
11、
【解析】
去分母得,根据有增根即可求出k的值.
【详解】
去分母得,
,
当时,
为增根,
故答案为:1.
本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.
12、y=100t-500(15<t≤23)
【解析】
分析:
由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
详解:
∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
∴李明整个上学过程中的骑车速度为:100米/分钟,
∴在自行车出故障前共用时:1000÷100=10(分钟),
∵修车用了5分钟,
∴当时,是指小明车修好后出发前往学校所用的时间,
∴由题意可得:(),
化简得:().
故答案为:().
点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
13、126°
【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.
【详解】
解:如图,由题意可得:
∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.
本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.
【详解】
证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠1=∠EAF,
∵∠1=∠1,
∴∠EAF=∠1,
∴AE∥CF,
∴四边形AECF是平行四边形.
本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.
15、(1)6;(2)x1=,x2=.
【解析】
(1)代入后利用完全平方公式计算;
(2)用公式法求解.
【详解】
(1)x2+y2
=(+1)2+(−1)2
=3+2+3-2
=6;
(2)a=3,b=2,c=-2,
b2-4ac=22-4×3×(-2)=28,
x==,
即x1=,x2=.
本题考查了二次根式与一元二次方程,熟练化简二次根式和解一元二次方程是解题的关键.
16、∠EFC=125°或145°.
【解析】
(1)首先作EP⊥CD于P,EQ⊥BC于Q,由∠DCA=∠BCA,得出EQ=EP,再由∠QEF+∠FEC=45°,得出∠PED+∠FEC=45°,进而得出∠QEF=∠PED,即可判定Rt△EQF≌Rt△EPD,得出EF=ED,即可得证;
(2)分类讨论:①当DE与AD的夹角为35°时,∠EFC=125°;②当DE与DC的夹角为35°时,∠EFC=145°,即可得解.
【详解】
(1)作EP⊥CD于P,EQ⊥BC于Q,如图所示
∵∠DCA=∠BCA
∴EQ=EP,
∵∠QEF+∠FEP=90°,∠PED+∠FEP=90°,
∴∠QEF=∠PED
在Rt△EQF和Rt△EPD中,
∴Rt△EQF≌Rt△EPD
∴EF=ED
∴矩形DEFG是正方形;
(2)①当DE与AD的夹角为35°时,
∠DEP=∠QEF=35°,
∴∠EFQ=90°-35°=55°,
∠EFC=180°-55°=125°;
②当DE与DC的夹角为35°时,
∠DEP=∠QEF=55°,
∴∠EFQ=90°-55°=35°,
∠EFC=180°-35°=145°;
综上所述,∠EFC=125°或145°.
此题主要考查正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
17、(1);(2)以a、b、c为三边的三角形的面积为1.
【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
【详解】
解:(1)原式;
(2)由题意得:,
,,,
,,,
,,
∴以a、b、c为三边的三角形是直角三角形.
∴它的面积是.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
18、(1)141;(2);(3)估算其中达到国家规定体育活动时间的人数大约有8040 人.
【解析】
(1)C组的人数为总人数减去各组人数;
(2))根据中位数的概念即中位数应是第161个数据,即可得出答案;
(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.
【详解】
(1)组人数为(人),
故答案为:141;
(2)本次调查数据的中位数是第161个数据,而第161个数据落在组,
所以本次调查数据的中位数落在组内,
故答案为:.
(3)估算其中达到国家规定体育活动时间的人数大约有(人).
本题考查读频数分布直方图的能力和利用统计图获取信息的能力同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
20、130°
【解析】
首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.
【详解】
解:正五边形的内角和为(5-2)×180°=540°,
∵∠A+∠B+∠C+∠D=410°,
∴∠E=540°-410°=130°,
故答案为:130°.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
21、.
【解析】
求出不等式x+9<4x-3的解集,再与已知不等式组的解集相比较即可得出结论.
【详解】
:,
解不等式得,,
不等式组的解集为,
,
故答案为:.
本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
22、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
23、y=﹣4x﹣1
【解析】
根据上加下减的法则可得出平移后的函数解析式.
【详解】
解:将直线y=﹣4x+3向下平移4个单位得到直线l,
则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.
故答案是:y=﹣4x﹣1
本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.
二、解答题(本大题共3个小题,共30分)
24、 (1);(2)①;②;(3)存在,或6.
【解析】
(1)先判断出S△ABC=4S△AEF,再求出AB,判断出Rt△AEF∽△Rt△ABC,得出,代值即可得出结论;
(2)先判断出四边形AEMF是菱形,再判断出△CME∽△CBA得出比例式,代值即可得出结论;
(3)分两种情况,利用平行四边形的性质,对边平行且相等,最后用勾股定理即可得出结论.
【详解】
解:(1)∵沿折叠,折叠后点落在上的点处,
∴,,
∴,
∵,
∴,
在中,∵,,,
∴,
∵,
∴,
∴,
∴,
即:,
∴;
(2)①∵沿折叠,折叠后点落在边上的点处,
∴,,,
∴,∴,
∴,
∴四边形是菱形,
设,则,,
∵四边形是菱形,
∴,
∴,
∴,
∴,
∴,,
即:,
②由①知,,,
∴;
(3)①如图3,当点在线段上时,
∵与是平行四边形的对边,
∴,,
由对称性知,,,
∴,
设,
∵,
∴,,
∴,
∴,
∴,,
∴,,
在中,,
∴,
∴,
即:;
②如图4,当点在线段的延长线上时,延长交于,
同理:,,
在中,,
∴,
∴,
∴,
即:或6.
此题是四边形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,对称的性质,勾股定理,平行四边形的性质,求出AE是解本题的关键.
25、见解析
【解析】
由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.
【详解】
证明:∵AE⊥BD于E,CF⊥BD于F,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
∴△ADE≌△CBF(SAS),
∴AD=BC,∠ADE=∠CBF,
∴AD∥BC,
∴四边形ABCD是平行四边形.
26、(1)作图见解析;(2)作图见解析.
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1是所求的三角形.
(2)如图所示:△A2B2C1为所求作的三角形.
此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年湖南长沙北雅中学数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2024-2025学年湖南长沙北雅中学数学九年级第一学期开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省广州市育才实验中学数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2024-2025学年广东省广州市育才实验中学数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省广州市玉岩中学2023-2024学年数学九年级第一学期期末达标检测试题含答案: 这是一份广东省广州市玉岩中学2023-2024学年数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了已知2a=3b,方程组的解的个数为等内容,欢迎下载使用。