2024年广东省广州市越秀区知用中学九上数学开学质量检测模拟试题【含答案】
展开
这是一份2024年广东省广州市越秀区知用中学九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数的自变量的取值范围是( )
A.B.C.D.
2、(4分)某校田径运动会上,参加男子跳高的16名运动员成绩如下表:
则这些运动员成绩的中位数是( )
A.1.5B.1.55C.1.60D.1.65
3、(4分)在平面直角坐标系中,点(﹣2,﹣a2﹣3)一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为( )
A.10B.13C.8D.11
5、(4分)若分式的值为0,则x的值是( )
A.2B.-2C.2或-2D.0
6、(4分)在平面直角坐标系中,把点A(1,﹣5)向上平移3个单位后的坐标是( ).
A.(1,-2)B.(1,-8)C.(4,-5)D.(-2,-5)
7、(4分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )
A.5B.6C.8D.10
8、(4分)关于的不等式的解集在数轴上表示如下,则的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A 、C、P、Q四点为顶点的四边形是平行四边形时则t= ________________
10、(4分)某车间5名工人日加工零件数依次为6、9、5、5、4,则这组数据的中位数是____.
11、(4分)如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
12、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
13、(4分)如图:在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B2018的坐标是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知是不等式的一个负整数解,请求出代数式的值.
15、(8分)如图,直线y=kx+b经过点A(0,5),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
16、(8分)在平面直角坐标中,边长为 2 的正方形 OABC 的两顶点 A、C 分别在 y 轴、x 轴的正半轴上,点 O 在原点.现将正方形 OABC 绕 O 点顺时针旋转,当 A 点第一次落在直线 y=x 上时停止旋转,旋转过程中,AB 边交直线 y=x于点 M,BC 边交 x 轴于点 N(如图).
(1)求边 OA 在旋转过程中所扫过的面积;
(2)旋转过程中,当 MN 和 AC 平行时,求正方形 OABC 旋转的度数;
(3)试证明在旋转过程中, △MNO 的边 MN 上的高为定值;
(4)设△MBN 的周长为 p,在旋转过程中,p 值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出 p 的值.
17、(10分)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.
18、(10分)解不等式组:,并把解集在数轴上表示出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为 .
20、(4分)如图,在Rt△ABC中,∠ACB=90°,∠B=10°,BC=1.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为_____.
21、(4分)如图,将正五边形 ABCDE 的 C 点固定,并按顺时针方向旋转一定的角度,可使得新五边形A′B′C′D′E′的 顶点 D′落在直线 BC 上,则旋转的角度是______________度.
22、(4分)的非负整数解为______.
23、(4分)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=_____cm时,四边形ABCD是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)星期天小红从家跑步去体育场,在那里锻炼了后又步行到文具店买笔,然后散步回到家。小明离家的距离与所用时间之间的图象如图所示.请你根据图象解答下列问题:
(1)体育场距文具店___________;___________;小明在文具店停留___________.
(2)请你直接写出线段和线段的解析式.
(3)当为何值时,小明距家?
25、(10分)(1)因式分解:
(2)计算:
26、(12分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据反比例函数自变量不为0,即可得解.
【详解】
解:∵ 函数为反比例函数,其自变量不为0,
∴
∴
故答案为A.
此题主要考查反比例函数的性质,熟练掌握,即可解题.
2、B
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,据此可得.
【详解】
将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).
故选:B
本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
3、C
【解析】
根据直角坐标系的坐标特点即可判断.
【详解】
解:∵a2+3≥3>0,
∴﹣a2﹣3<0,
∴点(﹣2,﹣a2﹣3)一定在第三象限.
故选C.
此题主要考查直角坐标系点的特点,解题的关键是熟知各象限坐标特点.
4、B
【解析】
试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.
在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B
考点:勾股定理.
5、A
【解析】
分式的值为0,分子为0,也就是x-2=0,即x=2,分母不能为0,x+2≠0,即x≠-2,所以选A.
【详解】
根据题意x-2=0且x+2≠0,所以x=2,选A.
本题考查分式的性质,分式的值为0,分子为0且分母不能为0,据此作答.
6、A
【解析】
让横坐标不变,纵坐标加3可得到所求点的坐标.
【详解】
∵-5+3=-2,
∴平移后的坐标是(1,-2),
故选A.
本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.
7、C
【解析】
根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.
【详解】
在△ABC中,AB=AC,AD是∠BAC的平分线,
ADBC,BC=2BD.
∠ADB=90°
在Rt△ABD中,根据勾股定理得:BD===4
BC=2BD=2×4=8.
故选C.
本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.
8、C
【解析】
先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.
【详解】
解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤,即=0,解得a=1.故选C.
本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3s或6s
【解析】
根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.
【详解】
由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,
若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形
∴3t-7=5-t
∴t=3
当P、Q分别在BC、AD上时
若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形
此时Q点已经完成第一周
∴4-[3(t-4)-4]=t-5+1
∴t=6
故答案为:3s或6s.
本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.
10、1
【解析】
根据中位数的定义即可得.
【详解】
将这组数据按从小到大进行排序为
则其中位数是1
故答案为:1.
本题考查了中位数的定义,熟记定义是解题关键.
11、11
【解析】
由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
【详解】
∵△ABF的面积等于6, △BEF的面积等于4,
∴EF:AF=4:6=2:3,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴△ADF∽△EBF,
∴,
∵S△BEF=4,
∴S△ADF=9,
∴S△ABD=S△ABF+S△AFD=6+9=15,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD是公共边,
∴△BCD≌△DAB,
∴S△BCD=S△DAB=15,
∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
故答案为11.
本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.
12、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
13、
【解析】
【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.
【详解】∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴B2018坐标(22018-1,22018-1).
故答案为
【点睛】本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.
三、解答题(本大题共5个小题,共48分)
14、,原式
【解析】
先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.
【详解】
∵
求解不等式,解得
又当,时分式无意义 ∴
∴原式
本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.
15、(1)y=﹣x+5;(2)点C的坐标为(1,2);(1)x≥1.
【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;
(1)根据图形,找出点C左边的部分的x的取值范围即可.
【详解】
(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),
∴,
解方程组得,
∴直线AB的解析式为y=﹣x+5;
(2)∵直线y=2x﹣4与直线AB相交于点C,
∴解方程组,
解得,
∴点C的坐标为(1,2);
(1)由图可知,x≥1时,2x﹣4≥kx+b.
本题考查两条直线相交或平行问题,解题的关键是掌握一次函数与一元一次不等式和待定系数法求一次函数解析式.
16、(1)OA 在旋转过程中所扫过的面积为 0.5π ;(1)旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度;(3)MN 边上的高为 1(2)在旋转正方形 OABC 的过程中,p 值无变化.见解析.
【解析】
(1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.
(1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.
(3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.
(2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.
【详解】
解:(1)过点M作MH⊥y轴,垂足为H,如图1,
∵点M在直线y=x上,
∴OH=MH.
在Rt△OHM中,
∵tan∠MOH= =1,
∴∠MOH=25°.
∵A点第一次落在直线y=x上时停止旋转,
∴OA旋转了25°.
∵正方形OABC的边长为1,
∴OA=1.
∴OA在旋转过程中所扫过的面积为 =0.5π.∵A 点第一次落在直线 y=x 上时停止旋转,∴OA 旋转了 25 度.
∴OA 在旋转过程中所扫过的面积为 0.5π .
(1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25 度.
∴∠BMN=∠BNM.BM=BN.
又∵BA=BC,AM=CN.
又∵OA=OC,∠OAM=∠OCN,
∴△OAM ≌△OCN.∴∠AOM=∠CON.
∴∠AOM= 1/1(90°-25°)=11.5 度.
∴旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度.
(3)证明:过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,
则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM.
∴∠AOE=∠CON.
在△OAE和△OCN中,
.
∴△OAE≌△OCN(ASA).
∴OE=ON,AE=CN.
在△OME和△OMN中
∴△OME≌△OMN(SAS).
∴∠OME=∠OMN.
∵MA⊥OA,MF⊥OF,
∴OF=OA=1.
∴在旋转过程中,△MNO的边MN上的高为定值.MN 边上的高为 1;
(2)在旋转正方形OABC的过程中,p值不变化.
证明:延长 BA 交 y 轴于 E 点,则∠AOE=25°-∠AOM,
∠CON=90°-25°-∠AOM=25°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE ≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=25°,OM=OM,
∴△OME ≌△OMN.
∴MN=ME=AM+AE.∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.
∴在旋转正方形 OABC 的过程中,p 值无变化.
故答案为:(1)OA 在旋转过程中所扫过的面积为 0.5π ;(1)旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度;(3)MN 边上的高为 1(2)在旋转正方形 OABC 的过程中,p 值无变化.见解析.
本题考查正方形的性质、全等三角形的判定与性质、角平分线的性质、平行线的性质、扇形的面积公式、等腰三角形的判定、特殊角的三角函数值等知识,有一定的综合性.而本题在图形旋转的过程中探究不变的量,渗透了变中有不变的辩证思想.
17、(8076,0)
【解析】
先利用勾股定理求得AB的长,再找到图形变换规律为:△OAB每连续3次后与原来的状态一样,然后求得△2020的横坐标,进而得到答案.
【详解】
∵A(-3,0),B(0,4),
∴OA=3,OB=4,
∴AB==5,
∴△ABC的周长=3+4+5=12,
图形变换规律为:△OAB每连续3次后与原来的状态一样,
∵2020÷3=673…1,
∴△2020的直角顶点是第673个循环组后第一个三角形的直角顶点,
∴△2020的直角顶点的横坐标=673×12=8076,
∴△2020的直角顶点坐标为(8076,0)
故答案为:(8076,0).
本题主要考查图形的变换规律,勾股定理,解此题的关键在于准确理解题意找到题中图形的变化规律.
18、﹣1<x≤3
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:
.
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.5
【解析】
试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,
∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,
∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,
∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+(4﹣x)2=x2,
解得:x=, ∴FM=.
考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.
20、1或2
【解析】
解:据题意得:∠EFB=∠B=10°,DF=BD,EF=EB,
∵DE⊥BC,
∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,
∴∠AEF=180°-∠BEF=60°,
∵在Rt△ABC中,∠ACB=90°,∠B=10°,BC=1,
∴AC=AB,∠BAC=60°,
设AC=x,则AB=2x,
由勾股定理得:AC2+BC2=AB2,
∴x2+12=(2x)2
解得x=.
如图①若∠AFE=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠EFD+∠AFC=∠FAC+∠AFC=90°,
∴∠FAC=∠EFD=10°,
∴CF=AF,
设CF=y,则AF=2y,
由勾股定理得CF2+AC2=AF2,
∴y2+()2=(2y)2
解得y=1,
∴BD=DF=(BC−CF)=1;
如图②若∠EAF=90°,
则∠FAC=90°-∠BAC=10°,
同上可得CF=1,
∴BD=DF=(BC+CF)=2,
∴△AEF为直角三角形时,BD的长为:1或2.
故答案为1或2.
点睛:此题考查了直角三角形的性质、折叠的性质以及勾股定理的知识.此题难度适中,注意数形结合思想与分类讨论思想的应用.
21、1°
【解析】
由于正五边形的每一个外角都是1°,所以将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转1°,就可使新五边形A′B′C′D′E′的顶点D′落在直线BC上.
【详解】
解:将正五边形ABCDE的C点固定,并依顺时针方向旋转,则旋转1度,可使得新五边形A′B′C′D′E′的顶点D′落在直线BC上.
故答案为:1.
本题考查正多边形的外角及旋转的性质:
(1)任何正多边形的外角和是360°;
(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
22、0,1,2
【解析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得:,
合并同类项,得,
不等式两边同时除以-7,得,
所以符合条件的非负整数解是0,1,2.
本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.
23、1
【解析】
根据OB=OD,当OA=OC时,四边形ABCD是平行四边形,即可得出答案.
【详解】
由题意得:当OA=1时,OC=14﹣1=1=OA,
∵OB=OD,
∴四边形ABCD是平行四边形,
故答案为:1.
本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.
二、解答题(本大题共3个小题,共30分)
24、(1)1,30,20;(2)线段OA对应的函数解析式为y=x(0≤x≤15),线段DE对应的函数解析式为y=−x+4.75(65≤x≤95);(3)当x为7.2或71时,小明距家1.2km.
【解析】
(1)根据题意和函数图象中的数据可以解答本题;
(2)根据函数图象中的数据可以求得线段OA和线段DE的解析式;
(3)根据(2)中的函数解析式可以求得当x为何值时,小明距家1.2km.
【详解】
解:(1)由图象可得,
体育场距文具店:2.5-1.5=1(km),
m=15+15=30,
小明在文具店停留:65-45=20(min),
故答案为:1,30,20;
(2)设线段OA对应的函数解析式为y=kx,
由15k=2.5,得k=,
即线段OA对应的函数解析式为y=x(0≤x≤15),
设线段DE对应的函数解析式为y=ax+b,
由题意得
,
得,
即线段DE对应的函数解析式为y=−x+4.75(65≤x≤95);
(3)将y=1.2代入y=x,得
1.2=x,解得,x=7.2,
将y=1.2代入y=−x+4.75,得
1.2=−x+4.75,解得,x=71,
答:当x为7.2或71时,小明距家1.2km.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
25、(1)(xy-2)2;(2).
【解析】
(1)利用完全平方公式因式分解;
(2)根据分式的减法运算法则计算.
【详解】
解:(1)
=(xy)2-4xy+22
=(xy-2)2
(2)
=
=
=.
本题考查的是因式分解、分式的加减运算,掌握完全平方公式因式分解、分式的加减法法则是解题的关键.
26、见解析.
【解析】
由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.
【详解】
证明:,,
四边形是平行四边形,
,
,
,
是等边三角形.
本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(m)
1.45
1.50
1.55
1.60
1.65
1.70
人数
3
4
3
2
3
1
相关试卷
这是一份广州市越秀区知用中学2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了下列运算中正确的是,抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市越秀区知用中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了正十边形的外角和为等内容,欢迎下载使用。
这是一份2023-2024学年广东省广州市越秀区知用中学八上数学期末学业质量监测试题含答案,共7页。试卷主要包含了是下列哪个二元一次方程的解,下列命题中的假命题是,下列根式中,最简二次根式是等内容,欢迎下载使用。