2024年北京市石景山区九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是( )
A.SA2>SB2,应该选取B选手参加比赛
B.SA2<SB2,应该选取A选手参加比赛
C.SA2≥SB2,应该选取B选手参加比赛
D.SA2≤SB2,应该选取A选手参加比赛
2、(4分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是( )
A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3
3、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=( )
A.50°B.40°C.80°D.100°
4、(4分)下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是( )
A.①②③B.②③C.③④D.②④
5、(4分)如图,有一张直角三角形纸片,两条直角边,,将折叠,使点和点重合,折痕为,则的长为( )
A.1.8B.2.5C.3D.3.75
6、(4分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
A.B.C.D.
7、(4分)下列图形中,既是轴对称图形又是中心对称图形的是
A.B.C.D.
8、(4分)下列各式中正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形ABCD中,AE⊥CD于E,∠B=50°,则∠DAE= ______.
10、(4分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.
11、(4分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
12、(4分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.
13、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)暑假期间,商洛剧院举行专场音乐会,成人票每张20元,学生票每张5元,为了吸引广大师生来听音乐会,剧院制定了两种优惠方案:
方案一:购买一张成人票赠送一张学生票;
方案二:成人票和学生票都打九折.
我校现有4名老师与若干名(不少于4人)学生听音乐会.
(1)设学生人数为(人),付款总金额为(元),请分别确定两种优惠方案中与的函数关系式;
(2)请你结合参加听音乐会的学生人数,计算说明怎样购票花费少?
15、(8分)解不等式组,并把解集在数轴上表示出来.
16、(8分)某校八年级师生为了响应“绿水青山就是金山银山”的号召,在今年3月的植树月活动中到某荒山植树,如图是抽查了其中20名师生植树棵数的统计图.
(1)求这20名师生种树棵数的平均数、众数、中位数;
(2)如果该校八年级共有师生500名,所植树的存活率是90%,估计所植的树共有多少棵存活?
17、(10分)将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.
18、(10分)心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中、分别为线段,为双曲线的一部分)。
(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?
(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知——自主探索,合作交流——总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问这样的课堂学习安排是否合理?并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.
20、(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:
如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.
21、(4分)一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:
点到直线的距离公式是:
如:求:点到直线的距离.
解:由点到直线的距离公式,得
根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.
则两条平行线:和:间的距离是______.
22、(4分)在平面直角坐标系中,点P(1,-3)关于原点O对称的点的坐标是________.
23、(4分)已知,点P在轴上,则当轴平分时,点P的坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)小东根据学习一次函数的经验,对函数y=|2x﹣1|的图象和性质进行了探究.下面是小东的探究过程,请补充完成:
(1)函数y=|2x﹣1|的自变量x的取值范围是 ;
(2)已知:
①当x=时,y=|2x﹣1|=0;
②当x>时,y=|2x﹣1|=2x﹣1
③当x<时,y=|2x﹣1|=1﹣2x;
显然,②和③均为某个一次函数的一部分.
(3)由(2)的分析,取5个点可画出此函数的图象,请你帮小东确定下表中第5个点的坐标(m,n),其中m= ;n= ;:
(4)在平面直角坐标系xOy中,作出函数y=|2x﹣1|的图象;
(5)根据函数的图象,写出函数y=|2x﹣1|的一条性质.
25、(10分)(1)分解因式:;
(2)化简:.
26、(12分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.
(1)若AB=10,BC=6,求△BCD的周长;
(2)若AD=BC,试求∠A的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
根据统计图可得出:SA2<SB2,
则应该选取A选手参加比赛;
故选:B.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、B
【解析】
找出方程的二次项系数,一次项系数,以及常数项即可.
【详解】
方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,
故选:B.
此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).解题关键在于找出系数及常熟项
3、C
【解析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.
【详解】
解:在Rt△ADF中,∵∠DAF=50°,
∴∠ADE=40°,
又∵DE平分∠ADC,
∴∠ADC=80°,
∴∠B=∠ADC=80°.
故选:C.
本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.
4、C
【解析】
根据矩形和菱形的判定定理进行判断.
【详解】
解:对角线互相垂直平分的四边形是菱形,①错误,④正确;
两组对边平行,一组邻边相等的四边形是菱形,②错误;
对角线相等的平行四边形是矩形,③正确;
∴正确的是③④,
故选:C.
本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.
5、D
【解析】
设CD=x,则BD=AD=10-x.在Rt△ACD中运用勾股定理列方程,就可以求出CD的长.
【详解】
解:设CD=x,则BD=AD=10-x.
∵在Rt△ACD中,(10-x)2=x2+52,
100+x2-20x=x2+25,
∴20x=75,
解得:x=3.75,
∴CD=3.75.
故选:D.
本题主要考查了折叠问题和勾股定理的综合运用.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质,用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
6、C
【解析】
由实际问题抽象出方程(行程问题).
【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
7、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
8、B
【解析】
根据算术平方根的定义对A进行判断;根据二次根式的性质对B进行判断;根据立方根的定义对C进行判断;根据平方根的定义对D进行判断
【详解】
A. =4,此项错误
B. =2 正确
C. =3,此项错误
D. = ,此项错误
故选B
本题考查了二次根式的混合运算,熟练掌握题目的定义是解题的关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°.
【解析】
根据平行四边形的对角相等求∠D,由AE⊥CD,利用直角三角形两锐角互余求∠DAE.
【详解】
解:∵四边形ABCD为平行四边形,
∴∠D=∠B=50°,
又∵AE⊥CD,
∴∠DAE=90°-∠D=40°.
故答案为:40°.
本题考查平行四边形的性质,注意掌握平行四边形的两组对角分别相等,直角三角形的两锐角互余.
10、
【解析】
解:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=.
故答案为:.
11、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
12、1
【解析】
先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
【详解】
解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四边形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案为:1.
本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
13、
【解析】
由直线与直线平行,可知k=1,然后把代入中即可求解.
【详解】
∵直线与直线平行,
∴k=1,
把代入,得
1+b=4,
∴b=1,
∴.
故答案为:.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)①当购买24张票时,两种方案付款一样多,②时,,方案①付款较少,③当时,,方案②付款较少.
【解析】
(1)首先根据方案①:付款总金额=购买成人票金额+除去4人后的学生票金额;
方案②:付款总金额=(购买成人票金额+购买学生票金额)打折率,列出关于的函数关系式;
(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数,再分三种情况讨论.
【详解】
(1)按方案①可得:
按方案②可得:
(2)因为,
①当时,得,解得,
∴当购买24张票时,两种方案付款一样多.
②当时,得,解得,
∴时,,方案①付款较少.
③当时,得,解得,
当时,,方案②付款较少.
本题根据实际问题考查了一次函数的应用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点的取值,再进一步讨论.
15、
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
由①得,x≥-1,
由②得,x<3,
所以,不等式组的解集为:-1≤x<3,
在数轴上表示如下:
本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
16、(1)平均数是3.4棵,众数是4棵,中位数是3.5棵;(2)1.
【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;
(2)用平均每人植的棵数乘以存活率,再乘以总人数即可得出答案.
【详解】
(1)这20名师生种树棵数的平均数是(2×4+3×6+4×8+5×2)=3.4(棵),这组数据的众数是4棵;
把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是3.5(棵);
(2)根据题意得:
3.4×90%×500=1(棵).
答:估计所植的树共有1棵存活.
本题考查了平均数、中位数以及众数,熟练掌握定义和计算公式是解题的关键.
17、
【解析】
根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC的长.
【详解】
解:由折叠可得,△EOC≌△EBC,
∴CB=CO,
∵四边形ABED是菱形,
∴AO=CO.
∵四边形ABCD是矩形,
∴∠B=90°,
设BC=x,则AC=2x,
∵在Rt△ABC中,AC2=BC2+AB2,
∴(2x)2=x2+32,
解得x=,即BC=.
根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.
18、(1)第35分钟时比开始学习后第5分钟学生的注意力更集中;(2)这样的课堂学习安排合理得.
【解析】
(1)从图象上看,AB表示的函数为一次函数,BC是平行于x轴的线段,CD为双曲线的一部分,设出解析式,代入数值可以解答,把自变量的值代入相对应的函数解析式,求出对应的函数值比较得出;
(2)求出相对应的自变量的值,代入相对应的函数解析式,求出注意力指标数与40相比较,得出答案
【详解】
(1)设AB段的函数关系式为,将代入得
解得:
∴.AB段的函数关系式为
设CD段的函数关系式为,将代入得
,
∴反比例函数的解析式为:
把代入得:
把代入得:
∴第35分钟时比开始学习后第5分钟学生的注意力更集中
(2)把代入得:
把代入得:
根据题意得
∴这样的课堂学习安排合理得。
此题考查反比例函数的应用,解题关键在于把自变量的值代入相对应的函数解析式
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10
【解析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.
【详解】
解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),
设该一次函数的解析式为y=kx+b,
则有:,
解得:,
∴y=x+1.
将x=11代入一次函数解析式,
故出租车费为10元.
故答案为:10.
此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
20、1.
【解析】
设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.
【详解】
解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,
y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,
∵购进的每一种衬衫的数量都不少于90件,
∴a≥90,
∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,
故答案为:1.
一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.
21、
【解析】
根据题意在:上取一点,求出点P到直线:的距离d即可.
【详解】
在:上取一点,
点P到直线:的距离d即为两直线之间的距离:
,
故答案为.
本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.
22、(﹣1,3)
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),然后直接作答即可.
【详解】
根据中心对称的性质,可知:点P(1,−3)关于原点O中心对称的点P`的坐标为(−1,3).
故答案为:(﹣1,3).
此题考查关于原点对称的点的坐标,解题关键在于掌握其性质.
23、
【解析】
作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.
【详解】
如图,作点A关于y轴对称的对称点
∵,点A关于y轴对称的对称点
∴
设直线的解析式为
将点和点代入直线解析式中
解得
∴直线的解析式为
将代入中
解得
∴
故答案为:.
本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)全体实数;(3)3,5;(4)图象见解析;(5)函数y的图象关于x=对称,答案不唯一.
【解析】
(1)函数y=|2x-1|的自变量x的取值范围是全体实数;
(3)取m=3把x=3代入y=|2x-1|计算即可;
(4)根据(3)中的表格描点连线即可;
(5)根据函数的图象,即可求解.
【详解】
解:(1)函数y=|2x-1|的自变量x的取值范围是全体实数;
故答案为全体实数;
(3)m、n的取值不唯一,取m=3,把x=3代入y=|2x-1|,得n=|2×3-1|=5,
即m=3,n=5.
故答案为3,5.
(4)图象如图所示;(要求描点、连线正确)
(5)函数y的图象关于x=对称,答案不唯一,符合函数y的性质均可.
此题考查了一次函数的图象与性质,掌握一次函数的性质是解题的关键.
25、(1) ;(2) .
【解析】
(1)先提取公因式,再根据完全平方公式分解即可;
(2)原式通分并利用分式的加法法则计算即可得到结果
【详解】
解:(1)
=
= ;
(2)
=
=
=
= .
本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.
26、(1)16;(2)25°.
【解析】
根据线段垂直平分线的性质,可得CD=AD,根据三角形的周长公式,可得答案;根据线段垂直平分线的性质,可得CD=AD,根据等腰三角形的性质,可得∠B与∠CDB的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.
【详解】
解:(1)∵DE是AC的垂直平分线,
∴AD=CD.
∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,
又∵AB=10,BC=6,
∴C△BCD=16;
(2)∵AD=CD
∴∠A=∠ACD,
设∠A=x,
∵AD=CB,
∴CD=CB,
∴∠CDB=∠CBD.
∵∠CDB是△ACD的外角,
∴∠CDB=∠A+∠ACD=2x,
∵∠A、∠B、∠ACB是三角形的内角,
∵∠A+∠B+∠ACB=180°,
∴x+2x+105°=180°,
解得x=25°
∴∠A=25°.
本题考查线段垂直平分线的性质.
题号
一
二
三
四
五
总分
得分
批阅人
型号
A
B
C
进价(元/件)
100
200
150
售价(元/件)
200
350
300
x
…
﹣2
0
1
m
…
y
…
5
1
0
1
n
…
2024年北京市石景山区名校数学九上开学学业质量监测试题【含答案】: 这是一份2024年北京市石景山区名校数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市清华大附属中学数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年北京市清华大附属中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市教育院附中数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024年北京市教育院附中数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。