2024年安徽省马鞍市培正学校九年级数学第一学期开学综合测试模拟试题【含答案】
展开
这是一份2024年安徽省马鞍市培正学校九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是( )
A.①②④B.②③C.①③④D.①④
2、(4分)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A.(,)B.(,)C.(,)D.(,4)
3、(4分)如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为( )
A.2B.4C.5D.5或2
4、(4分)如图,在2×2的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为( )
A.B.C.D.2﹣
5、(4分)如果多项式是一个完全平方式,那么的值为
A.B.C.D.
6、(4分)将直线沿轴向下平移1个单位长度后得到的直线解析式为( )
A.B.C.D.
7、(4分)在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.AB=DC,AD=BCB.AD∥BC,AD=BC
C.AB∥DC,AD=BCD.OA=OC,OD=OB
8、(4分)将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是3m, 4m 4,则OB 的最小值是____________.
10、(4分)函数中,自变量的取值范围是 .
11、(4分)分解因式:m2-9m=______.
12、(4分)如图,已知一次函数的图象为直线,则关于x的方程的解______.
13、(4分)不等式的正整数解有________个.
三、解答题(本大题共5个小题,共48分)
14、(12分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
15、(8分)先化简,再求值:(+a﹣2)÷,其中a=+1.
16、(8分)如图,函数的图像与函数的图像交于两点,与轴交于点,已知点的坐标为点的坐标为.
(1)求函数的表达式和点的坐标;
(2)观察图像,当时,比较与的大小;
(3)连结,求的面积.
17、(10分)如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.
(1)求证:DE=DF
(2)若;①求:的值;②求证:四边形HGAP为平行四边形.
18、(10分) (1)因式分解:; (2)计算:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:= .
20、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.
21、(4分)如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.
22、(4分)下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.
23、(4分)如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
25、(10分)某商品原来单价48元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为27元,求平均每次降价的百分数.
26、(12分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
(1)求出三点的坐标.
(2)求直线的函数表达式.
(3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先判断出CE=ON,AD=OM,再判断出CE=AD,即可判断出①正确;由于四边形OABC是平行四边形,所以OA不一定等于OC,即可得出②错误;先求出三角形COM的面积,再求出三角形AOM的面积求和即可判断出③错误,根据菱形的性质判断出OB⊥AC,OB与AC互相平分即可得出④正确.
【详解】
解:如图,过点A作AD⊥y轴于D,过点C作CE⊥y轴E,
∵AM⊥x轴,CM⊥x轴,OB⊥MN,
∴四边形ONCE和四边形OMAD是矩形,
∴ON=CE,OM=AD,
∵OB是▱OABC的对角线,
∴△BOC≌△OBA,
∴S△BOC=S△OBA,
∵S△BOC=OB×CE,S△BOA=OB×AD,
∴CE=AD,
∴ON=OM,故①正确;
在Rt△CON和Rt△AOM中,ON=OM,
∵四边形OABC是平行四边形,
∴OA与OC不一定相等,
∴△CON与△AOM不一定全等,故②错误;
∵第二象限的点C在双曲线y=上,
∴S△CON=|k1|=-k1,
∵第一象限的点A在双曲线y=上,
S△AOM=|k2|=k2,
∴S阴影=S△CON+S△AOM=-k1+k2=(k2-k1),
故③错误;
∵四边形OABC是菱形,
∴AC⊥OB,AC与OB互相平分,
∴点A和点C的纵坐标相等,点A与点C的横坐标互为相反数,
∴点A与点C关于y轴对称,故④正确,
∴正确的有①④,
故选:D.
本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的性质,全等三角形的判定和性质,菱形的性质,判断出CE=AD是解本题的关键.
2、C
【解析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.
【详解】
解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,
∵A的坐标为(1,),∴AE=,OE=1.
由等腰三角形底边上的三线合一得OB=1OE=4,
在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,
由旋转前后三角形面积相等得,即,
∴O′F=.
在Rt△O′FB中,由勾股定理可求BF=,∴OF=.
∴O′的坐标为().
故选C.
本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.
3、D
【解析】
该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.
【详解】
解:设另一个数为x,
则5+5+x=4×3,
解得x=1,
即b=5或1.
故选D.
本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
4、D
【解析】
由勾股定理求出DE,即可得出CD的长.
【详解】
解:连接AD,如图所示:
∵AD=AB=2,
∴DE==,
∴CD=2﹣;
故选D.
本题考查勾股定理;由勾股定理求出DE是解题关键.
5、D
【解析】
分析:完全平方差公式是指:,根据公式即可得出答案.
详解:根据完全平方公式可得:-m=±6,则m=±6,故选D.
点睛:本题主要考查的是完全平方公式,属于基础题型.明白完全平方公式的形式是解题的关键.
6、A
【解析】
直接根据“左加右减”的原则进行解答即可.
【详解】
解:由“左加右减”的原则可知:把直线y=2x沿y轴向下平移1个单位长度后,其直线解析式为y=2x-1.
故选:A.
本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
7、C
【解析】
根据平行四边形的判定方法逐一进行分析判断即可.
【详解】
A. AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
B. AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
C. AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;
D. OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,
故选C.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
8、D
【解析】
根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.
【详解】
将点A(2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B(−1,3),
故选:D.
本题考查坐标平移,记住坐标平移的规律是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先用勾股定理求出OB的距离,然后用配方法即可求出最小值.
【详解】
∵点 B 的坐标是3m, 4m 4,O是原点,
∴OB=,
∵,
∴OB,
∴OB的最小值是,
故答案为.
本题考查勾股定理求两点间距离,其中用配方法求出最小值是本题的重难点.
10、x≠1
【解析】
,x≠1
11、m(m-9)
【解析】
直接提取公因式m即可.
【详解】
原式=m(m-9).
故答案为:m(m-9).
此题主要考查了提公因式法分解因式,关键是正确找出公因式.
12、1.
【解析】
解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,
因此关于x的方程ax+b=1的解x=1.
故答案是1.
本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.
13、4
【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
【详解】
解:解得:不等式的解集是,
故不等式的正整数解为1,2,3,4,共4个.
故答案为:4.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
三、解答题(本大题共5个小题,共48分)
14、(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
【解析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.
【详解】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,
依题意,得:,
解得:x=6,
经检验,x=6是原方程的解,且符合题意,
.
答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;
(2)设A型机器安排m台,则B型机器安排台,
依题意,得:,
解得:,
为正整数,
,
答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
15、,2﹣.
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
解:原式=
==,
当a=+1时,
原式==2﹣.
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
16、(1),点的坐标为;(2)详见解析;(3)1.5
【解析】
(1)把A(2,1),C(0,3)代入y1=k1x+b可求出k1和b;把A(2,1)代入(x>0)求出k2,然后把两个解析式联立起来解方程组即可求出B点坐标;
(2)观察函数图象,当x>0,两图象被A,B分成三段,然后分段判断大小以及对应的x的值;
(3)利用梯形-进行计算.
【详解】
解:(1)∵点在函数的图像上,
,解得:,
∴函数的表达式为.
∵点在函数的图像上,
,∴函数的表达式为.
由,得:或,
∴点的坐标为.
(2)如图,分别过作轴的垂线,垂足分别为,则点的坐标分别为.
由图像可知:
当时,;当时,;当时,.
(3)梯形-
.
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力.
17、(1)见解析;(2)①,②见解析.
【解析】
(1)根据AD是△ABC的中线得到BD=CD,根据对顶角相等得到∠FDC=∠EDB,又因为∠DFC=∠DEB=90°,即可证得△BDE≌△CDF,继而证出DE=DF;(2)设BH=11x,HC=5x,则BD=CD=BC=8x,DH=3x,HC=5x,根据EH∥AB可得△EDH∽△ADB,再根据相似三角形对应边成比例以及DE=DF得到的值;②进一步求出的值,得到,再根据平行线分线段成比例定理证得FH∥AC ,即PH∥AC,再根据两组对边分别平行的四边形是平行四边形这一定理即可证得四边形HGAP为平行四边形.
【详解】
解:(1)∵AD是△ABC的中线,∴BD=CD,
∵∠FDC和∠EDB是对顶角,∴∠FDC=∠EDB ,
又∵BE⊥AE,CF⊥AE,∴∠DFC=∠DEB=90°,
∴△BDE≌△CDF(AAS),∴DE=DF.
(2)设则
① ∵EH∥AB
∴△EDH∽△ADB ∴∵
∴
②∵ ∴∵∴FH∥AC ∴PH∥AC
∵EG∥AB∴四边形HGAP为平行四边形
本题主要考查了三角形中线的性质、全等三角形的判定和性质、相似三角形的判定与性质、平行线分线段成比例定理以及平行四边形的判定等知识,解题的关键是理解题意,掌握数形结合的思想并学会灵活运用知识点.
18、 (1);(2)m
【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
【详解】
解:(1) ==.
(2)原式=
=
=
=.
本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
试题分析:原式=.故答案为.
考点:因式分解-运用公式法.
20、-1<x<1.
【解析】
先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.
【详解】
解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),
∴﹣4=﹣n﹣1,解得n=1,
∴P(1,﹣4),
又∵y=﹣x﹣1与x轴的交点是(﹣1,0),
∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.
故答案为﹣1<x<1.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
21、1
【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.
【详解】
解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,
在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,
22、(-3,1)
【解析】
根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.
【详解】
根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,
∴西便门的坐标为(−3,1),
故答案为(−3,1);
此题考查坐标确定位置,解题关键在于建立直角坐标系.
23、1.
【解析】
先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.
【详解】
解:设Rt△ABC的三边分别为a、b、c,
∴S1=a2=25,S2=b2,S3=c2=9,
∵△ABC是直角三角形,
∴c2+b2=a2,即S3+S2=S1,
∴S2=S1-S3=25-9=16,
∴BC=1,
故答案为:1.
本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A(4,0)、B(0,2)
(2)当0
相关试卷
这是一份2024年安徽省明光市数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省合肥市包河区九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省亳州市高炉学校九年级数学第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。