2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A.3B.4
C.5D.6
2、(4分)某学习小组 8 名同学的地理成绩是 35、50、45、42、36、38、40、42(单位:分),这组数据 的平均数和众数分别为( )
A.41、42B.41、41C.36、42D.36、41
3、(4分)函数的自变量取值范围是( )
A.B.C.D.
4、(4分)已知a<b,则下列不等式不成立的是( )
A.a+2<b+2B.2a<2bC.D.﹣2a>﹣2b
5、(4分)如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是( )
A.AB=CDB.AD∥BCC.OA=OCD.AD=BC
6、(4分)将正方形ABCD与等腰直角三角形EFG如图摆放,若点M、N刚好是AD的三等分点,下列结论正确的是( )
①△AMH≌△NME;②;③GH⊥EF;④S△EMN:S△EFG=1:16
A.①②③④B.①②③C.①③④D.①②④
7、(4分)下列二次根式中,不能与合并的是( )
A.B.C.D.
8、(4分)下表记录了甲、乙、丙、丁四名同学参加某区“中华魂”主题教育演讲比赛的相关数据:根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图像如图所示,当x< 2时,y的取值范围是________.
10、(4分)如图,点A在反比例函数的图像上,AB⊥x轴,垂足为B,且,则_____ .
11、(4分)已知一个钝角的度数为 ,则x的取值范围是______
12、(4分)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
13、(4分)如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.
三、解答题(本大题共5个小题,共48分)
14、(12分)列方程解应用题:从甲地到乙地有两条公路,一辆私家车在高速公路上的平均速度比在普通公路上的平均速度高,行驶千米的高速公路比行驶同等长度的普通公路节约分钟,求该汽车在高速公路上的平均速度.
15、(8分)某校计划成立下列学生社团: A.合唱团: B.英语俱乐部: C.动漫创作社; D.文学社:E.航模工作室为了解同学们对上述学生社团的喜爱情况某课题小组在全校学生中随机抽取了部分同学,进行“你最喜爱的一个学生社团”的调查,根据调查结果绘制了如下尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次接受调查的学生共有多少人;
(2)补全条形统计图,扇形统计图中D选项所对应扇形的圆心角为多少;
(3)若该学校共有学生3000人,估计该学校学生中喜爱合唱团和动漫创作社的总人数.
16、(8分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).
(1)求直线AB的解析式;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
17、(10分)如图所示,平行四边形中,和的平分线交于边上一点 ,
(1)求的度数.
(2)若,则平行四边形的周长是多少?
18、(10分)(1)发现规律:
特例1:===;
特例2:===;
特例3:=4;
特例4:______(填写一个符合上述运算特征的例子);
(2)归纳猜想:
如果n为正整数,用含n的式子表示上述的运算规律为:______;
(3)证明猜想:
(4)应用规律:
①化简:×=______;
②若=19,(m,n均为正整数),则m+n的值为______.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是_____.
20、(4分)在函数y=中,自变量x的取值范围是_____.
21、(4分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:
则这组数据的中位数是_____.
22、(4分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.
23、(4分)对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1)
(2)(﹣1)2﹣(﹣)(+)
25、(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
26、(12分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.
(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)
(2)求证:点D到BA,BC的距离相等.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
解:∵四边形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8﹣3=5,
在Rt△CEF中,CF===4,
设AB=x,
在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,
故选D.
考点:翻折变换(折叠问题);勾股定理.
2、A
【解析】
根据众数和平均数的概念求解.
【详解】
这组数据中42出现的次数最多,
故众数为42,
平均数为: =41.
故选A.
此题考查众数,算术平均数,解题关键在于掌握其定义.
3、C
【解析】
自变量的取值范围必须使分式有意义,即:分母不等于0。
【详解】
解:当时,分式有意义。即的自变量取值范围是。
故答案为:C
本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
4、C
【解析】
根据不等式的基本性质对各选项进行逐一分析即可.
【详解】
A、将a<b两边都加上2可得a+2<b+2,此不等式成立;
B、将a<b两边都乘以2可得2a<2b,此不等式成立;
C、将a<b两边都除以2可得,此选项不等式不成立;
D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;
故选C.
本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
5、D
【解析】
根据平行四边形的判定定理逐个判断即可;
1、两组 对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、对角线互相平分的四边形是平行四边形;
4、一组对边平行且相等的四边形是平行四边形;5、两组对角分别相等 的四边形是平行四边形.
【详解】
A、由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;
B、由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;
C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OA=OC可证出△ABO≌△CDO(AAS),根据全等三角形的性质可得出AB=CD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;
D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.
故选D.
【点评】
本题考查了平行四边形的判定以及全等三角形的判定与性质,逐一分析四个选项给定条件能否证明四边形ABCD是平行四边形是解题的关键.
6、A
【解析】
利用三角形全等和根据题目设未知数,列等式解答即可.
【详解】
解:设AM=x,
∵点M、N刚好是AD的三等分点,
∴AM=MN=ND=x,
则AD=AB=BC=3x,
∵△EFG是等腰直角三角形,
∴∠E=∠F=45°,∠EGF=90°,
∵四边形ABCD是正方形,
∴∠A=∠ABC=∠BGN=∠ABF=90°,
∴四边形ABGN是矩形,
∴∠AHM=∠BHF=∠AMH=∠NME=45°,
∴△AMH≌△NMH(ASA),故①正确;
∵∠AHM=∠AMH=45°,
∴AH=AM=x,
则BH=AB﹣AH=2x,
又Rt△BHF中∠F=45°,
∴BF=BH=2x,=,故②正确;
∵四边形ABGN是矩形,
∴BG=AN=AM+MN=2x,
∴BF=BG=2x,
∵AB⊥FG,
∴△HFG是等腰三角形,
∴∠FHB=∠GHB=45°,
∴∠FHG=90°,即GH⊥EF,故③正确;
∵∠EGF=90°、∠F=45°,
∴EG=FG=BF+BG=4x,
则S△EFG=•EG•FG=•4x•4x=8x2,
又S△EMN=•EN•MN=•x•x=x2,
∴S△EMN:S△EFG=1:16,故④正确;
故选A.
本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键.
7、C
【解析】
先化简二次根式,根据最简二次根式的被开方数是否与相同,可得答案.
【详解】
A、=,故A能与合并;
B、=2,故B能与合并;
C、=2,故C不能与合并;
D、能与合并
故选C
本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.
8、A
【解析】
根据表格中的数据可知,甲、丙的平均成绩较好,再根据方差越小越稳定即可解答本题.
【详解】
由平均数可知,甲和丙成绩较好,
甲的方差小于丙的方差,故甲发挥稳定.
故选A
本题考查方差、算术平均数,解答本题的关键是明确平均数和方差的意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y <1
【解析】试题解析∵一次函数y=kx+b(k≠1)与x轴的交点坐标为(2,1),且图象经过第一、三象限,
∴y随x的增大而增大,
∴当x<2时,y<1.
【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为(-,1).
10、1
【解析】
由=4,根据反比例函数的比例系数的几何意义得到,然后去绝对值即可得到满足条件的的值.
【详解】
∵=4,
∴,
∵点A在第一象限,
∴,
∴.故答案为:1.
本题综合考查了反比例函数系数的几何意义,理解反比例函数的系数的几何意义和图象所在的象限是解决问题的关键.
11、
【解析】
试题分析:根据钝角的范围即可得到关于x的不等式组,解出即可求得结果.
由题意得,解得.
故答案为
考点:不等式组的应用
点评:本题属于基础应用题,只需学生熟练掌握钝角的范围和一元一次不等式组的解法,即可完成.
12、一
【解析】
试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
考点:一次函数的性质
13、192.2
【解析】
由题意可知∠NAB=75°,∠SAC=15°,从而得到∠BAC=90°,然后利用勾股定理即可求出BC.
【详解】
解:由题意可知∠NAB=75°,∠SAC=15°,
∴∠BAC=90°,
∵AB=900米,AC=1200米,
∴BC==1500米.
故答案为1500.
本题考查了勾股定理的应用,得到∠BAC=90°是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、.
【解析】
设普通公路上的平均速度为,根据题意列出方程求出x的值,即可计算该汽车在高速公路上的平均速度.
【详解】
设普通公路上的平均速度为,
解得,
经检验:是原分式方程的解,
高速度公路上的平均速度为
本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.
15、(1)200;(2)补全条形统计图见解析;D选项所对应扇形的圆心角度数=72°;(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
【解析】
(1)由社团人数及其所占百分比可得总人数;
(2)总人数减去其它社团人数可求得的人数,再用乘以社团人数所占比例即可得;
(3)总人数乘以样本中、社团人数和占被调查人数的比例即可得.
【详解】
解:(1)本次接受调查的学生共有(人,
(2)社团人数为(人,
补全图形如下:
扇形统计图中选项所对应扇形的圆心角为,
(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为(人.
答:估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.
16、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).
【解析】
(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;
(2)利用即可求出结果;
(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。
【详解】
(1)设直线AB的解析式是y=kx+b
把A(0,1),B(3,0)代入得:
解得:
∴直线AB的解析式是:
(2)过点A作AM⊥PD,垂足为M,则有AM=1,
∵x=1时,=,P在点D的上方,
∴PD=n﹣,
由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
∴,
∴;
(3)当S△ABP=2时,,解得n=2,∴点P(1,2).
∵E(1,0), ∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1种情况,如图1,∠CPB=90°,BP=PC,
过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°.
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4, ∴C(3,4).
第2种情况,如图2, ∠PBC=90°,BP=BC,
过点C作CF⊥x轴于点F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°.
又∵∠CFB=∠PEB=90°,BC=BP,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5, ∴C(5,2).
3种情况,如图3,∠PCB=90°,
∴∠CPB=∠EBP=45°,
∴△PCB≌△ BEP,
∴PC=CB=PE=EB=2,∴C(3,2).
∴以PB为边在第一象限作等腰直角三角形BPC,
综上所述点C的坐标是(3,4)或(5,2)或(3,2).
本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质. 解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.
17、(1);(2)平行四边形的周长是.
【解析】
(1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
(2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
【详解】
解:(1) ∵四边形是平行四边形
又∵平分和
.
∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
(2)在中,.
又
,同理:
∵平行四边形中,,
∴平行四边形的周长是.
本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
18、(1);(2);(3)见解析;(4)①2121;②m+n=2
【解析】
(1)根据题目中的例子可以写出例4;
(2)根据(1)中特例,可以写出相应的猜想;
(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题;
(4)①②根据(2)中的规律即可求解.
【详解】
解:(1),
故答案为:;
(2),
故答案为:;
(3)证明:∵左边=,
∵n为正整数,
∴n+1>1.
∴左边=|n+1(n+1),
又∵右边=(n+1),
∴左边=右边.
即;
(4)①×=2121×=2121;
故答案为:2121;
②∵=19,
∴m+1=19,解得m=18,
∴n=m+2=21,
∴m+n=2.
本题考查规律型:数字的变化类,二次根式的混合运算,解答本题的关键是明确题意,根据已知等式总结一般规律并应用规律解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10+
【解析】
根据三角形中位线定理得到,,,根据三角形的周长公式计算即可.
【详解】
解:∵△ABC的周长为,
∴AB+AC+BC=,
∵点D、E、F分别是BC、AB、AC的中点,
∴,,,
∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,
故答案为:10+.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
20、x≥﹣2且x≠1
【解析】
分析:
根据使分式和二次根式有意义的条件进行分析解答即可.
详解:
∵要使y=有意义,
∴ ,解得:且.
故答案为:且.
点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.
21、5吨
【解析】
找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
表中数据为从小到大排列,吨处在第10位、第11位,为中位数,
故这组数据的中位数是吨.
故答案为:吨.
考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
22、1米
【解析】
根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.
【详解】
解:如图,设大树高为AB=1米,
小树高为CD=4米,
过C点作CE⊥AB于E,则EBDC是矩形,
连接AC,
∴EB=4m,EC=8m,AE=AB-EB=1-4=6米,
在Rt△AEC中,AC==1米
故答案为:1.
本题考查勾股定理的应用,即.
23、m>1
【解析】
根据图象的增减性来确定(m﹣1)的取值范围,从而求解.
【详解】
解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,
∴m﹣1>2,
解得,m>1.
故答案是:m>1.
本题考查了一次函数的图象与系数的关系.
函数值y随x的增大而减小⇔k<2;
函数值y随x的增大而增大⇔k>2.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)根据绝对值的意义、有理数的乘方、二次根式的性质、负整数指数幂的意义化简,进而求和即可;
(2)根据二次根式混合运算法则计算即可.
【详解】
(1)原式==;
(2)原式===.
本题考查了实数的混合运算.熟练掌握相关法则是解答本题的关键.
25、解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠3,2=∠1.
∵MN∥BC,∴∠1=∠3,3=∠1.
∴∠1=∠2,∠3=∠2.∴EO=CO,FO=CO.
∴OE=OF.
(2)∵∠2=∠3,∠2=∠1,∴∠2+∠2=∠3+∠1=90°.
∵CE=12,CF=3,∴.
∴OC=EF=1.3.
(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
当O为AC的中点时,AO=CO,
∵EO=FO,∴四边形AECF是平行四边形.
∵∠ECF=90°,∴平行四边形AECF是矩形.
【解析】
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠2,进而得出答案.
(2)根据已知得出∠2+∠2=∠3+∠1=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.
(3)根据平行四边形的判定以及矩形的判定得出即可.
26、(1)如图所示,DF即为所求,见解析;(2)见解析.
【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;
(2)根据角平分线的性质解答即可.
【详解】
(1)如图所示,DF即为所求:
(2)∵△ABC中,∠A=60°,∠C=40°,
∴∠ABC=80°,
∵DE垂直平分BC,
∴BD=DC,
∴∠DBC=∠C=40°,
∴∠ABD=∠DBC=40°,
即BD是∠ABC的平分线,
∵DF⊥AB,DE⊥BC,
∴DF=DE,
即点D到BA,BC的距离相等.
此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数分
90
80
90
80
方差
月用水量/吨
4
5
6
8
户数
5
7
5
3
2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年天津市蓟县名校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年天津市蓟县名校数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。