


2024-2025学年四川省简阳市数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四个二次根式中,是最简二次根式的是( )
A.B.C.D.
2、(4分)如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是( )
A.-2B.-2C.2-1D.1-2
3、(4分)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点,第二次点跳动至点第三次点跳动至点,第四次点跳动至点……,依此规律跳动下去,则点与点之间的距离是( )
A.2017B.2018C.2019D.2020
4、(4分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是( )
A.k>0B.k<0C.k≤0D.k≥0
5、(4分)如图, □ABCD中,AE平分∠DAB,∠B=100°则∠DAE等于 ( )
A.40°B.60°C.80°D.100°
6、(4分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为( )
A.x>B.
A.1B.2C.3D.4
8、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是( )
A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A’B’C’(A和A’,B和B’,C和C’分别是对应顶点),直线经过点A,C’,则点C’的坐标是 .
10、(4分)如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.
11、(4分)某中学人数相等的甲乙两班学生参加了同一次数学测试,两班的平均分、方差分别为甲=82分,乙=82分,S甲2=245分,S乙2=90分,那么成绩较为整齐的是______班(填“甲”或“乙”)。
12、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
13、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF,
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
15、(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.
(1)求路灯A的高度;
(2)当王华再向前走2米,到达F处时,他的影长是多少?
16、(8分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
17、(10分)如图,的对角线、相交于点,对角线绕点逆时针旋转,分别交边、于点、.
(1)求证:;
(2)若,,.当绕点逆时针方向旋转时,判断四边形的形状,并说明理由.
18、(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。
(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。
(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。
(3)若点P是此平面直角坐标系内的一点,当点A、 B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.
20、(4分)把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.
21、(4分)若正多边形的每一个内角为,则这个正多边形的边数是__________.
22、(4分)如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE= ________
23、(4分)若分式的值为零,则x的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)关于的一元二次方程
求证:方程总有两个实数根
若方程两根且,求的值
25、(10分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填空:a= ,b= ,c= ;
(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?
(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.
26、(12分)某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:
表(1):两班成绩
表(2):两班成绩分析表
(1)在表(2)中填空,a=________,b=________,c=________.
(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据最简二次根式的定义,可得答案.
【详解】
A. 被开方数含能开得尽方的因数=3,故A不符合题意;
B. 被开方数含分母,故B不符合题意;
C. 被开方数含能开得尽方的因数=2,故C不符合题意;
D. 被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;
故选:D
此题考查最简二次根式,解题关键在于掌握运算法则
2、D
【解析】
先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是2-1,即可得到点B1所表示的数.
【详解】
解:根据题意,AC=3-1=2,
∵∠ACB=90°,AC=BC,
∴,
∴B1到原点的距离是2-1.
又∵B′在原点左侧,
∴点B1表示的数是1-2.
故选D.
本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.
3、C
【解析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2017与点A2018的坐标,进而可求出点A2017与点A2018之间的距离.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
则第2018次跳动至点的坐标是(1010,1009),
第2017次跳动至点A2017的坐标是(-1009,1009).
∵点A2017与点A2018的纵坐标相等,
∴点A2017与点A2018之间的距离=1010-(-1009)=2019,
故选C.
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
4、A
【解析】
根据一次函数的性质求解.
【详解】
一次函数的图象经过第一、二、三象限,那么.故选A.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
5、A
【解析】
分析:由平行四边形的性质得出AD∥BC,得出∠DAB=180°-100°=80°,由角平分线的定义得出∠DAE=∠DAB=40°即可.
详解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BAD+∠B=180°,
∴∠DAB=180°−100°=80°,
∵AE平分∠DAB,
∴∠DAE=∠DAB=40°;
点睛:本题主要考查了平行四边形的性质,关键在于理解平行四边形的对边互相平行.
6、B
【解析】
由mx﹣2<(m﹣2)x+1,即可得到x<;由(m﹣2)x+1<mx,即可得到x>,进而得出不等式组mx﹣2<kx+1<mx的解集为<x<.
【详解】
把(,m)代入y1=kx+1,可得
m=k+1,
解得k=m﹣2,
∴y1=(m﹣2)x+1,
令y3=mx﹣2,则
当y3<y1时,mx﹣2<(m﹣2)x+1,
解得x<;
当kx+1<mx时,(m﹣2)x+1<mx,
解得x>,
∴不等式组mx﹣2<kx+1<mx的解集为<x<,
故选B.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
7、C
【解析】
根据一次函数的定义进行分析,即可得到答案.
【详解】
解:根据题意,一次函数有:,,,共3个;
故选择:C.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
8、C
【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).
【详解】
解:∵O(0,0),A(0,1),
∴A1(1,1),
∴正方形对角线OA1=,
∴OA2=2,
∴A2(2,0),
∴A3(2,2),
∴OA3=2,
∴OA4=4,
∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);
故选:C.
本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(1,3)。
【解析】∵B的坐标为(-1,0),BC⊥x轴,∴点C的横坐标―1。
∵将△ABC以y轴为对称轴作轴对称变换,得到△A’B’C’, ∴点C’的横坐标为1。
∵A(-2,0)在直线上,∴。
∴直线解析式为。
∵当x=1时,。∴点C’的坐标是(1,3)。
10、(8,3)
【解析】
根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.
【详解】
∵点A坐标为(﹣3,0)
∴AO=3
∵∠ADO=30°,AO⊥DO
∴AD=2AO=6,
∵DO=
∴DO=3
∴D(0,3)
∵四边形ABCD是平行四边形
∴AB=CD=8,AB∥CD
∴点C坐标(8,3)
故答案为(8,3)
本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.
11、乙
【解析】
根据方差的定义,对S甲2和S乙2比大小,方差越小数据越稳定,即可得出答案.
【详解】
解:两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分
∴S甲2>S乙2
∴成绩较为整齐的是乙.故答案是乙.
本题考查了方差的定义即方差越小数据越稳定,学生们掌握此定义即可.
12、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
13、<k≤2.
【解析】
直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.
【详解】
∵直线y=kx+b过点N(0,-2),
∴b=-2,
∴y=kx-2.
当直线y=kx-2的图象过A点(2,3)时,
2k-2=3,k=2;
当直线y=kx-2的图象过B点(2,2)时,
k-2=2,k=2;
当直线y=kx-2的图象过C点(4,2)时,
4k-2=2,k=,
∴k的取值范围是<k≤2.
故答案为<k≤2.
本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)平行四边形AEDF为菱形;理由详见解析
【解析】
试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;
(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.
试题解析:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)若AD平分∠BAC,四边形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四边形AEDF为菱形.
考点:1.全等三角形的判定与性质;2.菱形的判定.
15、(1)路灯A有6米高(2)王华的影子长米.
【解析】
试题分析:22. 解:(1)由题可知AB//MC//NE,
∴,而MC=NE
∴
∵CD=1米,EF=2米,BF=BD+4,∴BD=4米,∴AB==6米
所以路灯A有6米高
(2) 依题意,设影长为x,则解得米
答:王华的影子长米.
考点:相似三角形性质
点评:本题难度较低,主要考查学生对相似三角形性质解决实际生活问题的能力.为中考常考题型,要求学生牢固掌握解题技巧.
16、(1)详见解析;(2)144°;(3)众数为1.5小时、中位数为1.5小时.
【解析】
试题分析:(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,
(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;
(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.
解:(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),
补全统计图,如图所示:
(2)根据题意得:40%×360°=144°,
则扇形图中的“1.5小时”部分圆心角是144°;
(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.
17、(1)证明见解析;(2)平行四边形DEBF是菱形,证明见解析.
【解析】
(1)由“ASA”可证△COE≌△AOF,可得CE=AF;
(2)由勾股定理的逆定理可证∠DBC=90°,通过证明四边形DEBF是平行四边形,可得DO=BO=1=BC,可得∠BOC=45°,由旋转的性质可得∠EOC=45°,可得EF⊥BD,即可证平行四边形DEBF是菱形.
【详解】
证明:(1)∵四边形ABCD是平行四边形
∴CD∥AB,AO=CO,AB=CD
∴∠DCO=∠BAO,且AO=CO,∠AOF=∠COE
∴△COE≌△AOF(ASA)
∴CE=AF,
(2)四边形BEDF是菱形
理由如下
如图,连接DF,BE,
∵DB=2,BC=1,
∴DB2+BC2=5=CD2,
∴∠DBC=90°
由(1)可得AF=CE,且AB=CD
∴DE=BF,且DE∥BF
∴四边形DEBF是平行四边形
∴DO=BO=1,
∴OB=BC=1,且∠OBC=90°
∴∠BOC=45°,
∵当AC绕点O逆时针方向旋转45°时
∴∠EOC=45°
∴∠EOB=90°,即EF⊥BD
∴平行四边形DEBF是菱形
本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,证明∠DBC=90°是本题的关键.
18、(1)见解析;(2)见解析;(3)(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
【解析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;
(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;
(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.
【详解】
(1)如图,线段A′B′为所作;
(2)如图,线段A″B″为所作;
(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、9
【解析】
假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.
【详解】
设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:
化简①得 18x+6y+8z=250 ④
化简②得 4x+2y+5z=108 ⑤
由④-⑤得 14x+4y+3z=142 ⑥
由④×2-⑥×3得-6x+7z=74 ⑦
即z+6(z-x)=74
由z≤20得 74-6(z-x)≤20
解得z-x≥9
故第三组销售人员的人数比第一组销售人员的人数多 9人.
此题考查三元一次方程组的应用,解题关键在于列出方程.
20、y=(x+1)1-1
【解析】
先由平移方式确定新抛物线的顶点坐标.然后可得出顶点式的解析式。
【详解】
解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1).
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
故答案为:y=(x+1)1-1
此题考查了二次函数图象与几何变换以及一般式转化顶点式,正确将一般式转化为顶点式是解题关键.
21、八(或8)
【解析】
分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.
详解:根据正多边形的每一个内角为,
正多边形的每一个外角为:
多边形的边数为:
故答案为八.
点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.
22、40°
【解析】
根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.
【详解】
∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,
∴△ABC≌△DEF.
∵∠A=50°,
∴∠EDF=∠A=50°,
∵△DEF是直角三角形,
∴∠EDF+∠DFE=90°.
∵∠EDF=50°,
∴∠DFE=90°-50°=40°.
故答案为40°.
本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
23、1
【解析】
试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.
考点:分式的值为零的条件.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)k=±4.
【解析】
(1)证明根的判别式△≥0即可;
(2)由根与系数的关系可得,,继而利用完全平方公式的变形可得关于k的方程,解方程即可.
【详解】
(1),
,
∵,
∴Δ≥0,
方程总有两个实数根;
(2),,
∴,
∴.
本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握相关知识是解题的关键.
25、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.
【解析】
(1)根据平均数、中位数、众数的概念分析计算即可;
(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;
(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.
【详解】
解:(1)七年级的平均分a=,众数b=85,
八年级选手的成绩是:70,75,80,100,100,故中位数c=80;
故答案为85,85,80;
(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,
故七年级决赛成绩较好;
(3)S2七年级=(分2),
S2七年级<S2八年级
∴七年级代表队选手成绩比较稳定.
本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.
26、(1)8,8,7.5;(2)一班的成绩更好,理由见解析.
【解析】
(1)根据中位数、众数的定义及平均数的计算公式求解即可;(2)一班的成绩更好,从平均数、中位数、方差方面分析即可.
【详解】
解:(1)在5,5,5,8,8,8,8,9,10,10中,中位数为8;众数为8;
二班的平均分=(10+6+6+9+10+4+5+7+10+8)÷10=7.5.
(2)一班的成绩更好,理由一:一班的平均分比二班高;理由二:一班成绩的中位数比二班高.(答案不唯一,合理即可)
本题考查了中位数、众数、平均数及方差的知识,正确运用相关知识是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均分(分)
中位数(分)
众数(分)
方差(分2)
七年级
a
85
b
S七年级2
八年级
85
c
100
160
序号
1号
2号
3号
4号
5号
6号
7号
8号
9号
10号
一班(分)
5
8
8
9
8
10
10
8
5
5
二班(分)
10
6
6
9
10
4
5
7
10
8
班级
平均分
中位数
众数
方差
及格率
一班
7.6
a
b
3.44
30%
二班
c
7.5
10
4.45
40%
2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年陕西省西安市数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省镇江市九上数学开学教学质量检测试题【含答案】: 这是一份2024-2025学年江苏省镇江市九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省阜宁县数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省阜宁县数学九上开学教学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。