2024-2025学年四川省成都市成都七中万达学校高一新生入学分班质量检测数学试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列式子正确的是( )
A.若,则x<yB.若bx>by,则x>y
C.若,则x=yD.若mx=my,则x=y
2、(4分)如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为( )
A.B.C.D.
3、(4分)若分式的值为0,则x的值等于
A.0B.3C.D.
4、(4分)下列各点在反比例函数图象上的是( )
A.B.C.D.
5、(4分)巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是( )
A.45.2分钟B.48分钟C.46分钟D.33分钟
6、(4分)将0.000008这个数用科学记数法表示为( )
A.8×10-6B.8×10-5C.0.8×10-5D.8×10-7
7、(4分)不等式组的解集是( )
A.x>-2B.x<1
C.-1<x<2D.-2<x<1
8、(4分)无论取什么数,总有意义的分式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行
先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.
(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是 .
(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是 .
10、(4分)若分式的值为0,则x的值为_______.
11、(4分)已知+=0,则(a﹣b)2的平方根是_____.
12、(4分)若直角三角形两边的长分别为a、b且满足+|b-4|=0,则第三边的长是 _________.
13、(4分)方程的解是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.
(1)试说明△ABD≌△BCE;
(2)△AEF与△BEA相似吗?请说明理由;
(3)BD2=AD·DF吗?请说明理由.
15、(8分)(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,并说明理由.
(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.
16、(8分)已知:AC是平行四边形ABCD的对角线,且BE⊥AC,DF⊥AC,连接DE、BF.求证:四边形BFDE是平行四边形.
17、(10分)如图,在平行四边形AECF中,B,D是直线EF上的两点,BE=DF,连接AB,BC,AD,DC.求证:四边形ABCD是平行四边形.
18、(10分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成. 将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,. 若, 则正方形EFGH的面积为_______.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:______.
20、(4分)如图,四边形ABCD是菱形,点A,B,C,D的坐标分别是(m,0),(0,n),(1,0),(0,2),则mn=_____.
21、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
22、(4分)如图所示,将直角三角形, ,,沿方向平移得直角三角形,,阴影部分面积为_____________.
23、(4分)如图,O为数轴原点,数轴上点A表示的数是3,AB⊥OA,线段AB长为2,以O为圆心,OB为半径画弧交数轴于点C.则数轴上表示点C的数为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD,OE与AB交于点F.
(1)试判断四边形AEBO的形状,并说明理由;
(2)若OE=10,AC=16,求菱形ABCD的面积.
25、(10分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.
(1)若直线AB解析式为,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
26、(12分)当在什么范围内取值时,关于的一元一次方程的解满足?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
A选项错误,,若a>0,则x<y;若a<0,则x>y;
B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;
C选项正确;
D选项错误,当m=0时,x可能不等于y.
故选C.
点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.
2、C
【解析】
如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.
【详解】
如图连接BD.
∵四边形ABCD是菱形,
∴AD=AB=8,
∵
∴△ABD是等边三角形,
∴BA=AD=8,
∵PE=ED,PF=FB,
∴
故选:C.
考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.
3、C
【解析】
直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
【详解】
分式的值为0,
,,
解得:,
故选C.
本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.
4、C
【解析】
由可得,xy=-5,然后进行排除即可.
【详解】
解:由,即,xy=-5,经排查只有C符合;
故答案为C.
本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.
5、A
【解析】
试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米; 下坡时的速度为500米每分钟,长度为6000米; 又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案. 由上图可知,上坡的路程为3600米, 速度为200米每分钟; 下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟; 由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟; 下坡路程为3600米,所用时间是7.2分钟; 故总时间为30+8+7.2=45.2分钟.
考点:一次函数的应用.
6、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.
【详解】
0.000008用科学计数法表示为8×10-6 ,
故选A.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
7、D
【解析】
分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
详解:,
解①得:x>﹣2,
解②得:x<1,
则不等式组的解集是:﹣2<x<1.
故选D.
点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
8、A
【解析】
根据偶次幂具有非负性可得x+3>0,再由分式有意义的条件可得答案.
【详解】
∵x⩾0,
∴x+3>0,
∴无论x取什么数时,总有意义的分式是,
故选:A.
此题考查分式有意义的条件,解题关键在于掌握其性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、【答题空1】两组对边分别相等的四边形是平行四边形
【答题空2】有一个角是直角的平行四边形是矩形
【解析】
(1)∵AB=CD,EF=GH,
∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)
(2)由(2)知四边形为平行四边形,
∵∠C为直角,
∴四边形为矩形.(一个角为直角的平行四边形为矩形)
根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.
10、-1
【解析】
根据分式的值为零的条件可以求出x的值.
【详解】
解:根据题意得:,
解得:x=-1.
故答案为:-1.
若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
11、±1.
【解析】
根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.
【详解】
根据题意得a-1=2,且b-5=2,
解得:a=1,b=5,
则(a-b)2=16,则平方根是:±1.
故答案是:±1.
本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.
12、2或
【解析】
首先利用绝对值以及算术平方根的性质得出a,b的值,再利用分类讨论结合勾股定理求出第三边长.
【详解】
解:∵+|b-4|=0,
∴b=4,a=1.
当b=4,a=1时,第三边应为斜边,
∴第三边为;
当b=4,a=1时,则第三边可能是直角边,其长为 =2.
故答案为:2或.
本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
13、
【解析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.
【详解】
解:∵,
∴1-2x=x2,
∴x2+2x-1=0,
∴(x+1)(x-1)=0,
解得,x1=-1,x2=1,
经检验,当x=1时,原方程无意义,当x=-1时,原方程有意义,
故原方程的根是x=-1,
故答案为:x=-1.
本题考查无理方程,解答本题的关键是明确解无理方程的方法.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)见解析;(3)见解析;
【解析】
(1)∵△ABC是等边三角形,
∴AB=BC,∠ABD=∠BCE,
又∵BD=CE,
∴△ABD≌△BCE;
(2)△AEF与△BEA相似.
由(1)得:∠BAD=∠CBE,
又∵∠ABC=∠BAC,
∴∠ABE=∠EAF,
又∵∠AEF=∠BEA,
∴△AEF∽△BEA;
(3)BD2=AD•DF.
由(1)得:∠BAD=∠FBD,
又∵∠BDF=∠ADB,
∴△BDF∽△ADB,
∴,
即BD2=AD•DF.
本题主要考查等边三角形的性质和全等三角形的判定与性质以及相似三角形的判定和性质等知识点,解答本题的关键是要熟练掌握三角形全等的判定与性质定理.
15、(1)①EG=EH,理由详见解析;②GH平分∠AGE,理由详见解析;(2)①EG=EH,理由详见解析;②∠AGH=∠HGE+∠C,理由详见解析.
【解析】
(1)①由题意可证四边形GHEF是平行四边形,可得∠GHE=∠GFE,由折叠的性质和平行线的性质可证∠GEF=∠HGE,可得结论;
②由平行线的性质可得∠AGH=∠GHE=∠HGE,即可得结论;
(2)①由折叠的性质可得∠CEF=∠C'EF,∠C=∠C',由平行线的性质可得结论;
②∠AGH=∠HGE+∠C,由三角形的外角性质可得结论.
【详解】
(1)①EG=EH,
理由如下:
如图,
∵四边形ABCD是矩形
∴AD∥BC
∴AF∥BE,且GH∥EF
∴四边形GHEF是平行四边形
∴∠GHE=∠GFE
∵将一矩形纸片ABCD沿着EF折叠,
∴∠1=∠GEF
∵AF∥BE,GH∥EF
∴∠1=∠GFE,∠HGE=∠GEF
∴∠GEF=∠HGE
∴∠GHE=∠HGE
∴HE=GE
②GH平分∠AGE
理由如下:
∵AF∥BE
∴∠AGH=∠GHE,且∠GHE=∠HGE
∴∠AGH=∠HGE
∴GH平分∠AGE
(2)①EG=EH
理由如下,
如图,
∵将△ABC沿EF折叠
∴∠CEF=∠C'EF,∠C=∠C'
∵GH∥EF
∴∠GEF=∠HGE,∠FEC'=∠GHE
∴∠GHE=∠HGE
∴EG=EH
②∠AGH=∠HGE+∠C
理由如下:
∵∠AGH=∠GHE+∠C'
∴∠AGH=∠HGE+∠C
本题是四边形综合题,考查了矩形的性质,折叠的性质,平行线的性质,平行四边形的判定和性质,熟练运用这些性质进行推理是本题的关键.
16、见解析
【解析】
根据平行四边形的性质得出AB=CD,AB∥CD,求出△BAE≌△DCF,求出BE=DF,根据平行四边形的判定得出即可.
【详解】
证明:∵BE⊥AC,DF⊥AC,
∴BE∥DF,∠AEB=∠DFC=90°,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
在△BAE和△DCF中
∴△BAE≌△DCF(AAS),
∴BE=DF,
∵BE∥DF,
∴四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定、平行线的性质和全等三角形的性质和判定,能求出BE=DF和BE∥DF是解此题的关键.
17、见解析.
【解析】
连接AC交BD与点O.由四边形AECF是平行四边形,可证OA=OC,OE=OF,又BE=DF,所以OB=OD,根据对角线互相平分的四边形是平行四边形可证结论成立.
【详解】
证明:连接AC交BD与点O.
∵四边形AECF是平行四边形,
∴OA=OC,OE=OF,
∵BE=DF,
∴OE+BE=OF+DF,
∴OB=OD,
∴四边形ABCD是平行四边形.
本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.
18、1
【解析】
设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.
【详解】
解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,
∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,
∴得出S1=x,S2=4y+x,S3=8y+x,
∴S1+S2+S3=3x+12y=18,故3x+12y=18,
x+4y=1,
所以S2=x+4y=1,即正方形EFGH的面积为1.
故答案为1
本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
【详解】
,
=,
=,
故答案为:.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
20、1 .
【解析】
分析:根据菱形的对角线互相垂直平分得出OA=OC,OB=OD,得出m和n的值,从而得出答案.
详解:∵四边形ABCD是菱形, ∴OA=OC,OB=OD, ∴m=-1,n=-1,∴mn=1.
点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC,OB=OD是解题的关键.
21、2.1
【解析】
根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.
【详解】
连结AP,
在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=AP,
根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
∴当AP⊥BC时,△ABP∽△CAB,
∴AP:AC=AB:BC,
∴AP:8=6:10,
∴AP最短时,AP=1.8,
∴当AM最短时,AM=AP÷2=2.1.
故答案为2.1
解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
22、1
【解析】
根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.
【详解】
∵△ACB平移得到△DEF,
∴CE=BF=2,DE=AC=6,
∴GE=DE-DG=6-3=3,
由平移的性质,S△ABC=S△DEF,
∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(3+6)×2=1.
故答案为:1.
本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.
23、
【解析】
首先利用勾股定理得出BO的长,再利用A点的位置得出答案.
【详解】
解:∵AB⊥OA
∴∠OAB=90°,
∵OA=3、AB=2,
则数轴上表示点C的数为
故答案为:
本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)四边形AEBO为矩形,理由见解析(2)96
【解析】
(1)根据有3个角是直角的四边形是矩形即可证明;(2)根据矩形的性质得出AB=OE=10,再根据勾股定理求出BO,即可得出BD的长,再利用菱形的面积公式进行求解.
【详解】
(1)四边形AEBO为矩形,
理由如下:
∵菱形ABCD的对角线AC、BD相交于点O
∴AC⊥BD,∵BE∥AC,AE∥BD,
∴BE⊥BD,AE⊥AC,∴四边形AEBO为矩形;
(2)∵四边形AEBO为矩形
∴AB=OE=10,
∵AO=AC=8,
∴OB=
∴BD=12,
故S菱形ABCD=AC×BD=×16×12=96
此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知矩形的判定与性质及菱形的性质定理.
25、(1)①C(4,4);②12;(2)存在,1
【解析】
试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;
②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;
(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.
(1)①由题意,
解得所以C(4,4);
②把代入得,,所以A点坐标为(6,0),
所以;
(2)由题意,在OC上截取OM=OP,连结MQ
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为12,所以AM=12÷4=1,
∴AQ+PQ存在最小值,最小值为1.
考点:一次函数的综合题
点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.
26、
【解析】
先求出方程的解,根据已知方程的解取值范围列出不等式组,再求出不等式组的解集即可.
【详解】
解:解方程得:,
关于的一元一次方程的解满足,
,
解得:,
所以当时,关于的一元一次方程的解满足.
本题考查了解一元一次方程和解一元一次不等式组,根据方程的解取值范围得出关于的不等式组是解此题的关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年四川省成都市锦江区师一学校高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市锦江区师一学校高一新生入学分班质量检测数学试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市金堂高板中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂高板中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。