|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】01
    2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】02
    2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】

    展开
    这是一份2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于x的一元二次方程x2+mx+n=0的两个实根分别为5,﹣6,则二次三项式x2+mx+n可分解为( )
    A.(x+5)(x﹣6)B.(x﹣5)(x+6)C.(x+5)(x+6)D.(x﹣5)(x﹣6)
    2、(4分)某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为
    A.分钟B.分钟C.分钟D.分钟
    3、(4分)要使式子在实数范围内有意义,则x的取值范围是( )
    A.x≥1B.x<1C.x≤1D.x≠1
    4、(4分)如图,在平行四边形ABCD中,下列结论错误的是( )
    A.∠BDC=∠ABDB.∠DAB=∠DCB
    C.AD=BCD.AC⊥BD
    5、(4分)用配方法解一元二次方程时,下列变形正确的是( ).
    A.B.C.D.
    6、(4分)由下列条件不能判定△ABC为直角三角形的是( )
    A.∠A+∠B=∠CB.∠A:∠B:∠C=1:3:2
    C.a=2,b=3,c=4D.(b+c)(b-c)=a²
    7、(4分)如图,平面直角坐标系中,已知点B,若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是( )
    A.(3,1)B.(3,2)
    C.(1,3)D.(2,3)
    8、(4分)一组数据1,2,的平均数为2,另一组数据-l,,1,2,b的唯一众数为-l,则数据-1,,,1,2的中位数为( )
    A.-1B.1C.2D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
    10、(4分)已知一个直角三角形斜边上的中线长为6 cm,那么这个直角三角形的斜边长为______cm.
    11、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.
    12、(4分)已知,,则的值为___________.
    13、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简,再求值:(+)÷,其中x=﹣1.
    15、(8分)在△ABC中,∠C=90°,AB=20,若∠A=60°,求BC,AC的长.
    16、(8分)为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士” 组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样 调查了全市 40 个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行
    处理(设所测数据均为正整数),得频数分布表如下:
    根据表中提供的信息解答下列问题:
    (1)频数分布表中的a= , b= , c= ;
    (2)补充完整频数分布直方图;
    (3)如果全市共有 300 个测量点,那么在这一时刻噪声声级小于 75dB 的测量点约有多少个?
    17、(10分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.
    (1)求证:矩形是正方形;
    (2)判断与之间的数量关系,并给出证明.
    18、(10分)有下列命题
    ①一组对边平行,一组对角相等的四边形是平行四边形.
    ②两组对角分别相等的四边形是平行四边形.
    ③一组对边相等,一组对角相等的四边形是平行四边形.
    ④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
    (1)上述四个命题中,是真命题的是 (填写序号);
    (2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
    已知: .
    求证: .
    证明:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若是一个完全平方式,则______.
    20、(4分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩________分.
    21、(4分)若三角形三边分别为6,8,10,那么它最长边上的中线长是_____.
    22、(4分)如图,中,点是边上一点,交于点,若,,的面积是1,则的面积为_________.
    23、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y ,y (千米)与行驶时间x(小时)之间的函数关系图象。
    (1)填空:A,B两地相距___千米;货车的速度是___千米/时。
    (2)求两小时后,货车离C站的路程y 与行驶时间x之间的函数表达式;
    (3)客、货两车何时距离不大于30km?
    25、(10分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.
    26、(12分)如图,抛物线与轴交于,两点在的左侧),与轴交于点.
    (1)求点,点的坐标;
    (2)求的面积;
    (3)为第二象限抛物线上的一个动点,求面积的最大值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据题意,把x=5和x=-6分别代入方程,构成含m、n的二元一次方程组,解出m、n的值,然后可得二次三项式,再根据“十字相乘法”因式分解即可.
    【详解】
    根据题意可得
    解得
    所以二次三项式为x2+x-30
    因式分解为x2+x-30=(x﹣5)(x+6)
    故选B.
    此题主要考查了因式分解法解一元二次方程的应用,关键是利用x2+(p+q)x+pq=(x+p)(x+q)进行解答.
    2、C
    【解析】
    解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.
    【详解】
    首先表示一分钟后共打了分,
    则此人打长途电话的时间共是+1= 分。
    故选C.
    本题考查列代数式,根据题意列出正确的分式是解题关键.
    3、A
    【解析】
    根据被开方数大于等于0,列式得,x﹣1≥0,解不等式即可.
    【详解】
    解:根据被开方数大于等于0,列式得,x﹣1≥0,解得x≥1.
    故选A.
    本题考查二次根式有意义的条件,掌握被开方数为非负数是本题的解题关键.
    4、D
    【解析】
    根据平行四边形的性质进行判断即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠BDC=∠ABD,故选项A正确;
    ∵四边形ABCD是平行四边形,
    ∴∠DAB=∠DCB,故选项B正确;
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,故选项C正确;
    由四边形ABCD是平行四边形,不一定得出AC⊥BD,
    故选D.
    本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.
    5、D
    【解析】
    根据配方法的原理,凑成完全平方式即可.
    【详解】
    解:



    故选:D.
    本题主要考查配方法的掌握,关键在于一次项的系数等于2倍的二次项系数和常数项的乘积.
    6、C
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.
    【详解】
    A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;
    B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;
    C、∵22+32≠42,故不能判定是直角三角形,正确;
    D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;
    故选C.
    本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    7、D
    【解析】
    根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.
    【详解】
    解:△A1B1O如图所示,点B1的坐标是(2,3).
    故选D.
    本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.
    8、B
    【解析】
    试题解析:∵一组数据1,2,a的平均数为2,
    ∴1+2+a=3×2
    解得a=3
    ∴数据-1,a,1,2,b的唯一众数为-1,
    ∴b=-1,
    ∴数据-1,3,1,2,b的中位数为1.
    故选B.
    点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    分9是腰长与底边长两种情况讨论求解即可.
    【详解】
    ①当9是腰长时,三边分别为9、9、4时,能组成三角形,
    周长=9+9+4=1,
    ②当9是底边时,三边分别为9、4、4,
    ∵4+4<9,
    ∴不能组成三角形,
    综上所述,等腰三角形的周长为1.
    故答案为:1.
    本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.
    10、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半解答即可.
    解:∵直角三角形斜边上的中线长为6,
    ∴这个直角三角形的斜边长为1.
    考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.
    11、
    【解析】
    由矩形的性质可证明S△DFP=S△PBE,即可求解.
    【详解】
    解:作PM⊥AD于M,交BC于N.
    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
    ∴S△DFP=S△PBE=×2×5=5,
    ∴S阴=5+5=10,
    故答案为:10.
    本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.
    12、1
    【解析】
    将写成(x+y)(x-y),然后利用整体代入求值即可.
    【详解】
    解:∵,,
    ∴,
    故答案为:1.
    本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.
    13、35.
    【解析】
    利用四边形内角和得到∠BAD’,从而得到∠α
    【详解】
    如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35
    本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补
    三、解答题(本大题共5个小题,共48分)
    14、-5.
    【解析】
    括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.
    【详解】
    (+)÷
    =
    =
    =,
    当x=-1时,原式=-2-3=-5.
    本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
    15、
    【解析】
    由已知可得,∠B=30°,根据30°角直角三角形的性质可得AC=10,再由勾股定理即可求得BC的长.
    【详解】
    解:∵∠C=90°,∠A=60°,
    ∴∠B=180°-∠C-∠A=180°-90°-60°=30°.
    ∴AC=AB=×20=10.
    在Rt△ABC中,由勾股定理得BC===10.
    本题考查勾股定理.熟记定理是关键.
    16、(1)a=8, b=12, c=0.3;(2)见解析;(3)90.
    【解析】
    (1)在一个问题中频数与频率成正比.就可以比较简单的求出a、b、c的值;
    (2)另外频率分布直方图中长方形的高与频数即测量点数成正比,则易确定各段长方形的高;
    (3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解.
    【详解】
    (1)根据频数与频率的正比例关系,可知 ,首先可求出a=8,再通过40−4−6−8−10=12,求出b=12,最后求出c=0.3;
    (2)如图:
    (3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×300=90,
    ∴在这一时噪声声级小于75dB的测量点约有90个.
    此题考查频数(率)分布直方图,频数(率)分布表,用样本估计总体,解题关键在于看懂图中数据.
    17、(1)详见解析;(2),理由详见解析.
    【解析】
    作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;
    根据四边形的性质即全等三角形的性质即可证明,即可得在中,则
    【详解】
    证明:(1)过作于点,过作于点,如图所示:
    正方形,,
    ,且,
    四边形为正方形
    四边形是矩形,,.,
    又,
    在和中,
    ,,
    矩形为正方形,
    (2)矩形为正方形,,
    四边形是正方形,,,

    在和中,,
    ,,
    在中,,
    本题考查正方形的判定与性质,解题关键在于证明.
    18、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
    【解析】
    (1)根据平行线的判定定理写出真命题;
    (2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
    【详解】
    (1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
    ②两组对角分别相等的四边形是平行四边形.故正确;
    ③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
    ④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
    故答案是:①②④;
    (2)以②为例:
    已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
    求证:四边形ABCD是平行四边形.
    证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
    ∴∠1+∠2=∠2+∠1.①
    ∵∠ABC=∠ADC,
    即∠1+∠2=∠2+∠1,②
    由①②相加、相减得:∠1=∠1,∠2=∠2.
    ∴AB∥CD,AD∥BC.
    ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
    故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
    本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据完全平方公式的结构特征进行判断即可确定出m的值.
    【详解】
    ∵x2+2mx+1是一个完全平方式,
    ∴m=±1,
    故答案为:±1.
    本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键. 本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.
    20、1
    【解析】
    根据题意得:
    85×+80×+90×=17+24+45=1(分),
    答:小王的成绩是1分.
    故答案为1.
    21、1
    【解析】
    根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵三角形三边分别为6,8,10,62+82=102,
    ∴该三角形为直角三角形,
    ∵最长边即斜边为10,
    ∴斜边上的中线长为:1,
    故答案为1.
    本题考查了勾股定理的逆定理、直角三角形斜边中线的性质,熟练掌握勾股定理的逆定理以及直角三角形斜边中线的性质是解题的关键.
    22、
    【解析】
    利用△BFE∽△DFA,可求出△DFA的面积,再利用来求出△BAF的面积,即可得△ABD的面积,它的2倍即为的面积.
    【详解】
    解:中,BE∥AD,
    ∴△BFE∽△DFA,
    ∴.
    而△BEF的面积是1,
    ∴S△DFA=.
    又∵△BFE∽△DFA
    ∴.
    ∵,即可知S△BAF=.
    而S△ABD=S△BAF+S△DFA
    ∴S△AFD=.
    ∴▱ABCD的面积=×2=.
    故答案为.
    本题考查的是利用相似形的性质求面积,把握相似三角形的面积比等于相似比的平方是解决本题的重点.
    23、
    【解析】
    设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.
    【详解】
    设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,
    解得x=
    故折断处离地面的高度是尺.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.
    二、解答题(本大题共3个小题,共30分)
    24、(1)420,30;(2)y=30x−60;(3)当客车行驶的时间x, ⩽x⩽5时,客、货两车相距不大于30千米.
    【解析】
    (1)根据图象中的数据即可得到A,B两地的距离;
    (2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y与行驶时间x之间的函数关系式;
    (3)根据题意可以分相遇前和相遇后两种情况进行解答.
    【详解】
    (1)由题意和图象可得,
    A,B两地相距:360+60=420千米,
    货车的速度=60÷2=30千米/小时,
    故答案为:420,30;
    (2)设两小时后,货车离C站的路程y与行驶时间x之间的函数关系式为y=kx+b,
    由图象可得,货车的速度为:60÷2=30千米/时,
    则点P的横坐标为:2+360÷30=14,
    ∴点P的坐标为(14,360),
    ,得 ,
    即两小时后,货车离C站的路程y与行驶时间x之间的函数关系式为y=30x−60;
    (3)由题意可得,
    相遇前两车相距150千米用的时间为:(420−30)÷(60÷2+360÷6)= (小时),
    相遇后两车相距150千米用的时间为:+(30×2)÷(60÷2+360÷6)=5(小时),
    当客车行驶的时间x, ⩽x⩽5时,客、货两车相距不大于30千米。
    此题考查一次函数的应用,解题关键在于看懂图中数据
    25、,1
    【解析】
    根据两点距离公式、三角形的面积公式求解即可.
    【详解】
    解:令y=0,
    解得
    令x=0,
    解得
    ∴A、B两点坐标为(3,0)、(0,6)


    故答案为:,1.
    本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.
    26、(1),;(2);(3)当时,最大面积4.
    【解析】
    (1)在抛物线的解析式中, 设可以求出A、B点的坐标
    (2) 令,求出顶点C的坐标,进而能得出AB,CO的长度, 直接利用两直角边求面积即可
    (3) 作交于,设解析式把A,C代入求出解析式, 设则,把值代入求三角形的面积,即可解答
    【详解】
    (1)设,则


    (2)令,可得

    (3)如图:作交于
    设解析式
    解得:
    解析式
    设则
    当时,最大面积4
    此题考查二次函数综合题,解题关键在于做辅助线
    题号





    总分
    得分
    组别
    噪声声级分组
    频数
    频率
    1
    44.5~59.5
    4
    0.1
    2
    59.5~74.5
    a
    0.2
    3
    74.5~89.5
    10
    0.25
    4
    89.5~104.5
    b
    c
    5
    104.5~119.5
    6
    0.15
    合计
    40
    1.00
    相关试卷

    2024-2025学年四川省成都市金堂竹篙中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂竹篙中学高一新生入学分班质量检测数学试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年四川省成都市金堂高板中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂高板中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年四川省成都市成飞中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市成飞中学高一新生入学分班质量检测数学试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map