![2024-2025学年四川省成都七中九年级数学第一学期开学学业质量监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16191387/0-1727261208995/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年四川省成都七中九年级数学第一学期开学学业质量监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16191387/0-1727261209071/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年四川省成都七中九年级数学第一学期开学学业质量监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16191387/0-1727261209109/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年四川省成都七中九年级数学第一学期开学学业质量监测试题【含答案】
展开
这是一份2024-2025学年四川省成都七中九年级数学第一学期开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各数:其中无理数的个数是( )
A.4B.3C.2D.1
2、(4分)小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是( )
A.B.C.D.
3、(4分)如果代数式有意义,那么x的取值范围是( )
A.x≥0B.x≠1C.x>1D.x≥0且 x≠1
4、(4分)平行四边形所具有的性质是( )
A.对角线相等B.邻边互相垂直
C.每条对角线平分一组对角D.两组对边分别相等
5、(4分)如图,矩形的对角线相交于点,,则的周长为()
A.12B.14C.16D.18
6、(4分)如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是( )
A.k≤2B.k≥C.0<k<D.≤k≤2
7、(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形;把正方形边长按原法延长一倍得到正方形;以此进行下去,则正方形的面积为
A.B.C.D.
8、(4分)已知一组数据5,5,6,6,6,7,7,则这组数据的方差为( )
A.B.C.D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.
10、(4分)点 P(1,﹣3)关于原点对称的点的坐标是_____.
11、(4分)在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.
12、(4分)已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______
13、(4分)已知关于x的方程的两根为-3和1,则的值是________。
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(2+)(2﹣)+(﹣)÷.
15、(8分)学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为县级先进班集体,下表是三个班的五项素质考评得分表。
五项素质考评得分表(单位:分)
根据统计表中的信息回答下列问题:
(1)请你补全五项成绩考评分析表中的数据:
(2)参照上表中的数据,你推荐哪个班为县级先进班集体?并说明理由。
(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3∶2∶1∶1∶3的比确定班级的综合成绩,学生处的李老师根据这个综合成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,按照这个成绩,应推荐哪个班为县级先进班集体?为什么?
16、(8分)如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
17、(10分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.
(1)求证:BF=EF;
(2)若AB=8,DE=4,求平行四边形ABCD的周长.
18、(10分)先化简,再求值:其中,
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.
20、(4分)2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.
21、(4分)某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元的人数共26人.
(1)他们一共抽查了______人;
(2)抽查的这些学生,总共捐款______元.
22、(4分)如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.
23、(4分)在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,反比例函数y1=与一次函数y2=mx+n相交于A(﹣1,2),B(4,a)两点,AE⊥y轴于点E,则:
(1)求反比例函数与一次函数的解析式;
(2)若y1≤y2则直接写出x的取值范围;
(3)若M为反比例函数上第四象限内的一个动点,若满足S△ABM=S△AOB,则求点M的坐标.
25、(10分)在Rt△ABC中,∠B=900,AC=100cm, ∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。
(1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。
(2)当t为何值时,△DEF为直角三角形?请说明理由。
26、(12分)在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.
(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.
①求证:BE=BF;
②请判断△AGC的形状,并说明理由.
(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
依据无理数的三种常见类型进行判断即可.
【详解】
解:在中,是无理数,有1个,
故选:D.
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
2、A
【解析】
设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.
【详解】
设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,
由题意得:,
故选A.
本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.
3、C
【解析】
根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.
【详解】
根据题意可知,解得x>1,
故答案选C.
本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.
4、D
【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.
【详解】
平行四边形的对角相等,对角线互相平分,对边平行且相等.
故选D.
此题考查平行四边形的性质,解题关键在于掌握其性质.
5、A
【解析】
根据题意可得三角形ABO是等边三角形,利用性质即可解答.
【详解】
解:已知在矩形ABCD中,AO=BO,
又因为∠BOC=120°,故∠AOB=60°,
可得三角形AOB为等边三角形,
又因为AC=8,则AB=4,
则三角形AOB的周长为12.
答案选A.
本题考查矩形和等边三角形的性质,熟悉掌握是解题关键.
6、D
【解析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.
【详解】
解:
直线与正方形有公共点,
直线在过点和点两直线之间之间,
如图,可知,,
当直线过点时,代入可得,解得,
当直线过点时,代入可得,解得,
的取值范围为:,
故选:.
本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.
7、B
【解析】
根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.
【详解】
解:如图,已知小正方形ABCD的面积为1,则把它的各边延长一倍后,的面积,
新正方形的面积是,
从而正方形的面积为,
以此进行下去,
则正方形的面积为.
故选:B.
此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.
8、A
【解析】
先求出这组数据的平均数,然后代入方差计算公式求出即可.
【详解】
解:∵平均数=(5+5+6+6+6+7+7)=6,
S2= [(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]= .
故选:A.
本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.
【详解】
解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.
∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,
∴△MED和△DEF均为等腰直角三角形.
∵DE=DF,∠EDH=∠FDH=45°,
∴DH⊥EF,EH=HF,
∴FH∥BC.
设ME=HE=FH=x,则GH=3﹣x.
由FH∥BC可知:,
即,解得:,
∴.
在Rt△AME中,.
故答案为:.
本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.
10、(-1,3)
【解析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数可知:点P(1,-3)关于原点的对称点的坐标.
【详解】
解:∵关于原点对称的点,横坐标与纵坐标都互为相反数,
∴点P(1,-3)关于原点的对称点的坐标为(-1,3).
故答案为:(-1,3).
本题考查了关于原点对称的点,横坐标与纵坐标都互为相反数,难度较小.
11、1.
【解析】
根据三角形中位线定理解答即可.
【详解】
∵D,E分别为AC,BC的中点,
∴AB=2DE=1,
故答案为:1.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
12、13或;
【解析】
第三条边的长度为
13、
【解析】
由根与系数的关系可分别求得p、q的值,代入则可求得答案.
【详解】
解:∵关于x的方程x2+px+q=0的两根为-3和1,
∴-3+1=-p,-3×1=q,
∴p=2,q=-3,
∴q-p=-3-2=-1,
故答案为-1.
本题主要考查根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1•x2=.
三、解答题(本大题共5个小题,共48分)
14、3-
【解析】
根据平方差公式和多项式除以单项式可以解答本题.
【详解】
解:(2+)(2﹣)+(﹣)÷
=4﹣3+2﹣
=3﹣.
故答案为:3-.
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
15、(1)8.6,8,10;(2)甲班:三个班的平均数相同,甲班众数与中位数高于乙和丙;(3)画图见解析,丙班.
【解析】
(1)根据平均数是所有数据的和除以数据的个数,众数是出现次数最多的数据,中位数是一组数据按从小到大或从大到小的顺序排列中间的数(或中间两个数的平均数),可得答案;
(2)根据平均数、众数、中位数的大小比较,可得答案;
(3)根据加权平均数的大小比较,可得答案.
【详解】
(1) ①=(9+10+9+6+9)=8.6,②观察五项素质考评得分表可知乙班的众数是8,③观察五项素质考评得分表可知甲班的中位数是10;
(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;
(3)根据题意,得:丙班的平均数为9×+10×+9×+6×+9×=8.9
补全条形统计图,如图所示
∵8.5<8.7<8.9,
∴依照这个成绩,应推荐丙班为市级先进班集体.
本题考查了统计表、众数、加权平均数、中位数和条形统计图,学生们需要认真分析即可得到答案.
16、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可.
(2)根据平行四边形的对角线相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.
试题解析:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线.
∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC.
∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF.
∴∠DAH=∠DHA,∠FAH=∠FHA.
∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,
∴∠DHF=∠BAC.∴∠DHF=∠DEF.
考点:1.三角形中位线定理;2.直角三角形斜边上的中线性质;3.平行四边形的判定.
17、 (1)证明见解析;(2)1.
【解析】
(1)只要证明CB=CE,利用等腰三角形的三线合一的性质即可解决问题;
(2)根据CE=CB,求出BC的长即可解决问题.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CE,
∴∠E=∠ABE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠E=∠CBE,
∴CB=CE,
∵CF⊥BE,
∴BF=EF.
(2)∵四边形ABCD是平行四边形,
∴AB=CD=8,
∵DE=4,
∴BC=CE=12,
∴平行四边形ABCD的周长为2(AB+BC)=1.
本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.
18、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,然后利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.
【详解】
解:原式=
=
=
=,
把代入,得:原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用总年龄除以总人数即可得解.
【详解】
解:由题意可得该班学生的平均年龄为 .
故答案为:14.4.
本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.
20、1
【解析】
根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.
【详解】
∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,
∵直角三角形的面积是=3,
又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=1.
故答案为1.
本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.
21、1, 2.
【解析】
(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.构建方程即可解决问题.
(2)根据捐款人数以及捐款金额,求出总金额即可.
【详解】
解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.
由题意:5x+8x=26,
解得x=2,
∴一共有:6+8+10+16+4=1人,
故答案为1.
(2)总共捐款额=6×5+8×10+10×15+16×20+4×30=2(元).
故答案为:2.
本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22、
【解析】
本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.
解:已知山坡AC的坡度i=1:0.5,
∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,
∴=tan30°,即=,
解得:x=,
∴CB=2x=,
故答案为.
23、,
【解析】
(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;
(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积
【详解】
解:(1)将绕点A旋转后得到,连接
绕点A旋转后得到
根据勾股定理得
(2)过点A作于点G
由(1)知,即为等腰直角三角形,
根据勾股定理得
故答案为:(1). , (2).
本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1) ,;(2)x≤﹣1或0<x≤1;(3)点M的坐标(2,﹣1)或(3+,).
【解析】
(1)先将点A代入反比例函数解析式中即可求出反比例函数的解析式,然后根据反比例函数的解析式求出点B的坐标,再利用待定系数法即可求出一次函数的解析式;
(2)根据图象及两个函数的交点即可得出x的取值范围;
(3)先求出一次函数与y轴的交点坐标,然后利用S△ABM=S△AOB和平移的相关知识分两种情况:向上平移或向下平移两种情况,分别求出平移后的直线与反比例函数在第四象限的交点即可.
【详解】
(1)把A(﹣1,2)代入反比例函数得,k=﹣2
∴反比例函数的关系式为,
把B(1,a)代入得, ,
∴B(1,)
把A(﹣1,2),B(1,)代入一次函数得,
解得
∴一次函数的关系式为:
(2)当时,反比例函数的图象在一次函数图象的下方,
结合图象可知,当,自变量x的取值范围为:x≤﹣1或0<x≤1.
(3)当时,
∴与y轴的交点坐标为(0,),如图:
∵S△ABM=S△AOB
∴根据平行线间的距离处处相等,可将一次函数进行平移个单位,则平移后的直线与反比例函数在第四象限的交点即为所求的M点.
将向下平移个单位过O点,关系式为:,
解得 ,
∵M在第四象限,
∴M(2,﹣1),
将向上平移个单位后直线的关系式为:,
解得 ,
∵M在第四象限,
∴,
综上所述,点M的坐标(2,﹣1)或,
本题主要考查反比例函数,一次函数与几何综合,掌握待定系数法及平移的相关知识和二元一次方程组的解法是解题的关键.
25、(1)能,10;(2) 或12,理由见解析.
【解析】
(1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.
(2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.
【详解】
解:(1)能,
∵在Rt△ABC中,∠C=90°﹣∠A=30°,
∴AB=AC=×60=30cm。
∵CD=4t,AE=2t,
又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。
∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。
当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。
∴当t=10时,AEFD是菱形。
(2)若△DEF为直角三角形,有两种情况:
①如图1,∠EDF=90°,DE∥BC,
则AD=2AE,即60﹣4t=2×2t,解得:t= 。
②如图2,∠DEF=90°,DE⊥AC,
则AE=2AD,即
2t =2×60-8t,解得:t=12。
综上所述,当t= 或12时,△DEF为直角三角形
本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.
26、(1)①证明见解析;②△AGC是等腰直角三角形.证明见解析;(2)△AGC是等边三角形.
【解析】
(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;
②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;
(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.
【详解】
(1)证明:①∵四边形ABCD是平行四边形,∠ADC=90°,
∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,
∴∠F=∠FDC,∠BEF=∠ADF,
∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,
∴BF=BE;
②△AGC是等腰直角三角形.
理由如下:连接BG,
由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,
∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,
∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,
在△AFG和△CBG中, ∴△AFG≌△CBG,
∴AG=CG,∠FAG=∠BCG,
又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,
即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;
(2)△AGC是等边三角形.
证明:连接BG,∵FB绕点F顺时针旋转60°至FG,
∴△BFG是等边三角形,
∴FG=BG,∠FBG=60°,
又∵四边形ABCD是平行四边形,∠ADC=60°,
∴∠ABC=∠ADC=60°
∴∠CBG=180°-∠FBG-∠ABC=180°-60°-60°=60°,
∴∠AFG=∠CBG,
∵DF是∠ADC的平分线,
∴∠ADF=∠FDC,
∵AB∥DC,
∴∠AFD=∠FDC,
∴∠AFD=∠ADF,
∴AF=AD,
在△AFG和△CBG中,
,
∴△AFG≌△CBG(SAS),
∴AG=CG,∠FAG=∠BCG,
在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°-60°=120°,
∴∠AGC=180°-(∠GAC+∠ACG)=180°-120°=60°,
∴△AGC是等边三角形.
本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
班级
行为规范
学习成绩
校运动会
艺术获奖
劳动卫生
甲班
10
10
6
10
7
乙班
10
8
8
9
8
丙班
9
10
9
6
9
班级
平均分
众数
中位数
甲班
8.6
10
③
乙班
8.6
②
8
丙班
①
9
9
相关试卷
这是一份2024-2025学年四川省成都七中育才学校数学九年级第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都七中学九上数学开学学业水平测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年辽宁省沈阳市第一二七中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)