|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】01
    2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】02
    2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】

    展开
    这是一份2024-2025学年上海市长宁区高级中学九上数学开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若点是正比例函数图象上任意一点,则下列等式一定成立的是( )
    A.B.C.D.
    2、(4分)若关于的一元二次方程通过配方法可以化成的形式,则的值不可能是
    A.3B.6C.9D.10
    3、(4分)一个五边形的内角和为( )
    A.540° B.450° C.360° D.180°
    4、(4分)如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为( )
    A.1B.2C.3D.4
    5、(4分)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论
    ①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,
    其中正确结论的个数是( )
    A.1个B.2个C.3个D.4个
    6、(4分)小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )
    A.正方形B.正六边形
    C.正八边形D.正十二边形
    7、(4分)下列各组数据中,能作为直角三角形三边长的是( )
    A.4,5,6B.5,12,13C.6,7,8D.8,9,10
    8、(4分)在下列各式中,是分式的有( )
    A.2个B.3个C.4个D.5个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和 分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).
    10、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
    11、(4分)关于x的分式方程的解为非正数,则k的取值范围是____.
    12、(4分)已知:线段AB,BC.
    求作:平行四边形ABCD.
    以下是甲、乙两同学的作业.
    甲:
    ①以点C为圆心,AB长为半径作弧;
    ②以点A为圆心,BC长为半径作弧;
    ③两弧在BC上方交于点D,连接AD,CD.
    四边形ABCD即为所求平行四边形.(如图1)
    乙:
    ①连接AC,作线段AC的垂直平分线,交AC于点M;
    ②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.
    四边形ABCD即为所求平行四边形.(如图2)
    老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.
    13、(4分)在数学课上,老师提出如下问题:
    如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
    小明的折叠方法如下:
    如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
    老师说:“小明的作法正确.”
    请回答:小明这样折叠的依据是______________________________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是( )分钟.
    A.4.5B.8.25C.4.5 或8.25D.4.5 或 8.5
    15、(8分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.
    (1)求,两点的坐标;
    (2)在给定的坐标系中画出该函数的图象;
    (3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.
    16、(8分) 我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
    (1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
    ②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
    (2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
    17、(10分)在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).
    (1)求一次函数的解析式;
    (2)求一次函数的图象与坐标轴围成的三角形的面积.
    18、(10分)校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票的学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.
    (1)甲、乙、丙的得票数依次是______、______、______;
    (2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.
    20、(4分)关于x的方程有增根,则m的值为_____
    21、(4分)已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.
    22、(4分)平行四边形ABCD中,∠A=80°,则∠C= °.
    23、(4分)某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=1.32,S乙2=1.26,则应选________参加这项比赛(填“甲”或者“乙”)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:

    (1)这次共抽取了_________名学生进行调查统计;
    (2)将条形统计图补充完整,扇形统计图中D类所对应的扇形圆心角大小为_________;
    (3)如果该校共有3000名学生,请你估计该校B类学生约有多少人?
    25、(10分)分解因式:
    (1)2xy-x2-y2;
    (2)2ax3-8ax.
    26、(12分)先化简,然后从,,,中选择一个合适的数作为的值代入求值
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.
    【详解】
    ∵点A(a,b)是正比例函数图象上的一点,
    ∴,
    ∴2a+3b=0.
    故选A
    本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.
    2、D
    【解析】
    方程配方得到结果,即可作出判断.
    【详解】
    解:方程,变形得:,
    配方得:,即,
    ,即,
    则的值不可能是10,
    故选:.
    此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.
    3、A
    【解析】【分析】直接利用多边形的内角和公式进行计算即可.
    【详解】根据正多边形内角和公式:180°×(5﹣2)=540°,
    即一个五边形的内角和是540度,
    故选A.
    【点睛】本题主要考查了正多边形内角和,熟练掌握多边形的内角和公式是解题的关键.
    4、B
    【解析】
    根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
    【详解】
    解:过A点作AE⊥y轴,垂足为E,
    ∵点A在双曲线y=上,
    ∴四边形AEOD的面积为1,
    ∵点B在双曲线y=上,且AB∥x轴,
    ∴四边形BEOC的面积为3,
    ∴四边形ABCD为矩形,则它的面积为3−1=2.
    故选B.
    5、C
    【解析】
    解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,
    ∴AD =DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN =90°-∠ADN=∠FDC.
    ∴△EDA≌△FDC(ASA).
    ∴AE=CF.
    ∴BE+CF= BE+ AE=AB.
    在Rt△ABC中,根据勾股定理,得AB=BC.
    ∴(BE+CF)=BC.
    ∴结论①正确.
    设AB=AC=a,AE=b,则AF=BE= a-b.
    ∴.
    ∴.
    ∴结论②正确.
    如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.
    ∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,
    ∴EO≥EI(EF⊥AD时取等于)=FH=GD,
    OF≥GH(EF⊥AD时取等于)=AG.
    ∴EF=EO+OF≥GD+AG=AD.
    ∴结论④错误.
    ∵△EDA≌△FDC,
    ∴.
    ∴结论③错误.
    又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.
    ∴结论⑤正确.
    综上所述,结论①②⑤正确.故选C.
    6、C
    【解析】
    根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.
    【详解】
    A. 正方形的每个内角是,∴能密铺;
    B. 正六边形每个内角是, ∴能密铺;
    C. 正八边形每个内角是,与无论怎样也不能组成360°的角,∴不能密铺;
    D. 正十二边形每个内角是 ∴能密铺.
    故选:C.
    本题主要考查平面图形的镶嵌,根据平面镶嵌的原理:拼接点处的几个多边形的内角和恰好等于一个圆周角.
    7、B
    【解析】
    欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    【详解】
    A、∵42+52=41≠62,
    ∴不能作为直角三角形三边长,故本选项错误;
    B、∵52+122=169=132,
    ∴能作为直角三角形三边长,故本选项正确;
    C、∵62+72=85≠82,
    ∴不能作为直角三角形三边长,故本选项错误;
    D、∵82+92=141≠102,
    ∴不能作为直角三角形三边长,故本选项错误.
    故选B.
    本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
    8、B
    【解析】
    依据分式的定义即可判断.
    【详解】
    (x+3)÷(x-1)=,
    ,(x+3)÷(x-1)=,这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.
    故式子中是分式的有3个.
    故选:B.
    此题考查了分式的定义,熟练掌握分式的定义是解题得到关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<
    【解析】
    方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.
    【详解】
    解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,
    ∴ 则
    故答案为:<
    本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.
    10、
    【解析】
    求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.
    【详解】
    如图,
    在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:
    ∴菱形形变前的面积与形变后的面积之比:
    ∵这个菱形的“形变度”为2:,
    ∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,

    ∵若这个菱形的“形变度”k=,


    ∴S△A′E′F′=.
    故答案为:.
    考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.
    11、k≥1且k≠3.
    【解析】
    分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.
    【详解】
    去分母得:x+k+2x=x+1,
    解得:x=,
    由分式方程的解为非正数,得到⩽0,且≠−1,
    解得:k≥1且k≠3,
    故答案为k≥1且k≠3.
    本题考查的是分式方程,熟练掌握分式方程是解题的关键.
    12、乙 对角线互相平分的四边形是平行四边形
    【解析】
    根据平行四边形的判定方法,即可解决问题.
    【详解】
    根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.
    故答案为:乙;对角线互相平分的四边形是平行四边形.
    本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.
    13、对角线互相垂直平分的四边形是菱形
    【解析】
    解:如图,连接DF、DE.
    根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.
    则四边形DECF恰为菱形.
    所以小明这样折叠的依据是: 对角线互相垂直平分的四边形是菱形.
    三、解答题(本大题共5个小题,共48分)
    14、D
    【解析】
    根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.
    【详解】
    解:由图2可得,
    当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,
    设当小明离家600米时,所用的时间是t分钟,
    则200+160(t-2)=600时,t=4.5,
    80(16-t)=600时,t=8.5,
    故选:D.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    15、(1)点A的坐标为, 点B的坐标为 (2)图形见解析(3)
    【解析】
    试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.
    试题解析:
    (1)令,则;
    令,则.
    ∴点A的坐标为,
    点B的坐标为.
    (2)如图:
    (3)
    16、(1)①;②1;(2)AD=BC.
    【解析】
    (1)①首先证明△ADB'是含有30°的直角三角形,可得ADAB'即可解决问题;
    ②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;
    (2)结论:ADBC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.
    【详解】
    (1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.
    ∵DB'=DC',∴AD⊥B'C'.
    ∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴ADAB'BC.
    故答案为.
    ②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.
    ∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.
    ∵B'D=DC',∴ADB'C'BC=1.
    故答案为1.
    (2)结论:ADBC.
    理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.
    ∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.
    ∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.
    ∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴ADBC.
    本题是四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    17、 (1) y=2x+4 ;(2)直线y=2x+4与坐标轴围成的三角形的面积为
    【解析】
    (1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.
    (2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.
    【详解】
    (1)∵一次函数y=kx+b的图象为直线,且与直线y=2x平行,
    ∴k=2
    又知其过点A(1,6),
    ∴2+b=6
    ∴b=4.
    ∴一次函数的解析式为y=2x+4
    (2)当x=0时,y=4,
    可知直线y=2x+4与y轴的交点为(0,4)
    当y=0时,x=-2,
    可知直线y=2x+4与x轴交点为(-2,0)
    可得该直角三角形的两条直角边长度分别为4和2.
    所以直线y=2x+4与坐标轴围成的三角形的面积为
    本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.
    18、(1)50、80、70;(2)乙的平均成绩最高,应录用乙.
    【解析】
    (1)分别用总票数乘以甲,乙,丙各自得票数的百分比即可得出各自的得票数;
    (2)按照加权平均数的求法 分别求出甲,乙,丙的成绩,选出成绩最高者即可.
    【详解】
    (1)甲的得票数为:200×25%=50(票),
    乙的得票数为:200×40%=80(票),
    丙的得票数为:200×35%=70(票),
    (2)甲的平均成绩:

    乙的平均成绩:

    丙的平均成绩:

    ∵78.5>76>73.8,
    ∴乙的平均成绩最高,应录用乙.
    本题主要考查加权平均数和扇形统计图,掌握加权平均数的求法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1米
    【解析】
    根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.
    【详解】
    解:如图,设大树高为AB=1米,
    小树高为CD=4米,
    过C点作CE⊥AB于E,则EBDC是矩形,
    连接AC,
    ∴EB=4m,EC=8m,AE=AB-EB=1-4=6米,
    在Rt△AEC中,AC==1米
    故答案为:1.
    本题考查勾股定理的应用,即.
    20、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘(x−3),得2−x−m=2(x−3)
    ∵原方程增根为x=3,
    ∴把x=3代入整式方程,得2−3−m=0,
    解得m=−1.
    故答案为:−1.
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    21、2
    【解析】
    由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.
    【详解】
    ∵数据1、1、6、6、x的众数为6、中位数为1,
    ∴x<1且x≠1,
    则x可取2、3、4均可,
    故答案为2.
    考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    22、1
    【解析】
    试题分析:利用平行四边形的对角相等,进而求出即可.
    解:∵四边形ABCD是平行四边形,
    ∴∠A=∠C=1°.
    故答案为:1.
    23、乙
    【解析】
    根据方差的意义即可解答.
    【详解】
    ∵S甲2=1.32>S乙2=1.26
    ∴乙更加稳定
    本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量. 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    二、解答题(本大题共3个小题,共30分)
    24、(1)50;(2)图见解析,;(3)该校B类学生约有1320人.
    【解析】
    (1)根据A类的条形统计图和扇形统计图信息即可得;
    (2)先根据题(1)的结论求出D类学生的人数,由此即可得补充条形统计图,再求出D类学生的人数占比,然后乘以可得圆心角的大小;
    (3)先求出B类学生的人数占比,再乘以3000即可得.
    【详解】
    (1)这次调查共抽取的学生人数为(名)
    故答案为:50;
    (2)D类学生的人数为(名)
    则D类学生的人数占比为
    D类所对应的扇形圆心角大小为
    条形统计图补全如下:
    (3)B类学生的人数占比为
    则(人)
    答:该校B类学生约有1320人.
    本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
    25、(1)-(x-y)2;(2)2ax(x+2)(x-2).
    【解析】
    (1)先提取-1,然后利用完全平方公式因式分解即可;
    (2)先提取公因式,然后利用平方差公式因式分解即可.
    【详解】
    (1)原式=-(x2-2xy+y2)=-(x-y)2;
    (2)原式=2ax(x2-4)=2ax(x+2)(x-2).
    此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.
    26、
    【解析】
    根据分式的运算进行化简,再根据分母不为零代入一个数求解.
    【详解】
    解:原式
    当,原式;或当时,原式
    此题主要考查分式的化简求值,解题的关键是熟知分式运算法则.
    题号





    总分
    得分



    笔试
    78
    80
    85
    面试
    92
    75
    70
    相关试卷

    2024-2025学年上海市长宁区9校数学九上开学质量检测试题【含答案】: 这是一份2024-2025学年上海市长宁区9校数学九上开学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海市浦东区数学九上开学检测试题【含答案】: 这是一份2024-2025学年上海市浦东区数学九上开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海市娄山中学九上数学开学考试模拟试题【含答案】: 这是一份2024-2025学年上海市娄山中学九上数学开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map