2024-2025学年广西龙胜县数学九上开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知正比例函数的图象如图所示,则一次函数y=mx+n图象大致是( )
A.B.
C.D.
2、(4分)如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是( )
A.正方形B.矩形C.菱形D.不能确定
3、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的( )
A.众数B.平均数C.方差D.中位数
4、(4分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中点M的坐标为( )
A.(,1)B.(1,)C.(,)D.(,)
5、(4分)已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为( )
A.17B.13C.17或13D.10
6、(4分)一元二次方程2x(x+1)=(x+1)的根是()
A.x=0B.x=1
C.D.
7、(4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是45分
D.该班学生这次考试成绩的平均数是45分
8、(4分)下列各式计算正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则=______.
10、(4分)一元二次方程x2﹣4=0的解是._________
11、(4分)当__________时,分式有意义.
12、(4分)如图,Rt△ABC中,∠ACB=90°,BC=AC=3,点D是BC边上一点,∠DAC=30°,点E是AD边上一点,CE绕点C逆时针旋转90°得到CF,连接DF,DF的最小值是___.
13、(4分)对于代数式m,n,定义运算“※”:m※n=(mn≠0),例如:4※2=.若(x﹣1)※(x+2)=,则2A﹣B=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).
15、(8分)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.
(1)如图2,取AB的中点H,连接HE,求证:AE=EF.
(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.
16、(8分)如图,是学习分式方程应用时,老师板书的问题和两名同学对该题的解答.(老师找聪聪和明明分别用不同的方法解答此题)
(1)聪聪同学所列方程中的表示_______________________________________.
(2)明明一时紧张没能做出来,请你帮明明完整的解答出来.
17、(10分)甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.
(1)若按三项考试成绩的平均分选拔,应选谁参赛;
(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.
18、(10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)不等式组的解集为_________.
20、(4分)如图,正方形ABCD的面积为,则图中阴影部分的面积为______________ .
21、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.
22、(4分)若最简二次根式与的被开方数相同,则a的值为______.
23、(4分)对于实数c,d,min{c,d}表示c,d两数中较小的数,如min{3,﹣1}=﹣1.若关于x的函数y=min{2x2,a(x﹣t)2}(x≠0)的图象关于直线x=3对称,则a的取值范围是_____,对应的t值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
25、(10分)菱形中,,,为上一个动点,,连接并延长交延长线于点.
(1)如图1,求证:;
(2)当为直角三角形时,求的长;
(3)当为的中点,求的最小值.
26、(12分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
根据图示填写下表:
结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用正比例函数的性质得出>0,根据m、n同正,同负进行判断即可.
【详解】
.解:由正比例函数图象可得:>0,
mn同正时,y=mx+n经过一、二、三象限;
mn同负时,过二、三、四象限,
故选C.
本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.
2、B
【解析】
根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;
【详解】
证明:∵DE∥AC,AE∥BD,
∴四边形AODE是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOD=∠AOD=90°,
∴四边形AODE是矩形.
故选B.
本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.
3、D
【解析】
9人成绩的中位数是第5名,参赛选手要想知道自己是否进入前五名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的成绩各不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.
故选D
本题考查了统计量的选择,属于基础题,难度较低,熟练掌握中位数的特性为解答本题的关键.
4、B
【解析】
由正方形和旋转的性质得出AB=BC'=,∠BAM=∠BC'M=90°,证出Rt△ABM≌Rt△C'BM,得出∠1=∠2,求出∠1=∠2=30°,在Rt△ABM中,求出AM的长即可.
【详解】
解:∵四边形ABCD是正方形,
∴AB=BC'=,∠BAM=∠BC'M=90°,
在Rt△ABM和Rt△C'BM中,,
∴Rt△ABM≌Rt△C'BM(HL),
∴∠1=∠2,
∵将边长为的正方形绕点B逆时针旋转30°,
∴∠CBC'=30°,
∴∠1=∠2=30°,
在Rt△ABM中,AB=,∠1=30°,
∴AB=AM=,
∴AM=1,
∴点M的坐标为(1,);
故选B.
本题考查了正方形的性质、旋转的性质、坐标与图形性质、全等三角形的判定与性质、直角三角形的性质等知识;熟练掌握旋转的性质和正方形的性质,证明三角形全等是解决问题的关键.
5、A
【解析】
分3是腰长与底边两种情况讨论求解.
【详解】
解:①3是腰长时,三角形的三边分别为7、3、3,
3+3=6<7,不能组成三角形;
②3是底边长时,三角形的三边分别为7、7、3,
能组成三角形,周长=7+7+3=17,
综上所述,这个等腰三角形的周长是17,
故选:A.
本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.
6、D
【解析】
移项,提公因式法分解因式,即可求得方程的根.
【详解】
解:2x(x+1)=(x+1),
2x(x+1)-(x+1)=0,
(2x-1)(x+1)=0,
则方程的解是:x1= ,x2=-1.
故选:D.
本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.
7、D
【解析】
试题解析:该班人数为:2+5+6+6+8+7+6=40,
得45分的人数最多,众数为45,
第20和21名同学的成绩的平均值为中位数,中位数为:=45,
平均数为: =44.1.
故错误的为D.
故选D.
8、C
【解析】
原式各项利用二次根式的化简公式计算得到结果,即可做出判断.
【详解】
(A)=2,是4的算术平方根,为正2,故A错;
(B)由平方差公式,可得:=3,正确。
(C)=2,故错;
(D)、没有意义,故错;
选C。
此题考查算术平方根,解题关键在于掌握运算法则
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
10、x=±1
【解析】
移项得x1=4,
∴x=±1.
故答案是:x=±1.
11、≠
【解析】
若分式有意义,则≠0,
∴a≠
12、.
【解析】
先依据条件判定△ACE≌△BCF,可得∠CBF=∠CAE=30°,即可得到点F在射线BF上,由此可得当DF⊥BF时,DF最小,依据∠DBF=30°,即可得到DF=BD=
【详解】
由旋转可得,FC=EC,∠ECF=90°,
又∵∠ACB=90°,BC=AC=3,
∴∠CAE=∠CBF,
∴△ACE≌△BCF,
∴∠CBF=∠CAE=30°,
∴点F在射线BF上,
如图,当DF⊥BF时,DF最小,
又∵Rt△ACD中,∠CAD=30°,AC=3=BC,
∴CD= ,
∴BD=3﹣,
又∵∠DBF=30°,
∴DF= BD=,
故答案为 .
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,得到点F的运动轨迹是本题的难点.
13、-1
【解析】
由可得答案.
【详解】
由题意,得:
故答案为:﹣1.
本题主要考查分式的混合运算,解题的关键是掌握分式的加减混合运算顺序和运算法则.
三、解答题(本大题共5个小题,共48分)
14、教学楼A与办公楼B之间的距离大约为94.6米.
【解析】
由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC和BC的长就可转化为运用三角函数解直角三角形.
【详解】
由题意可知
∠ACP=∠BCP= 90°,∠APC=30°,∠BPC=45°
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,
∴
∴
≈60+20×1.732 =94.64≈94.6(米)
答:教学楼A与办公楼B之间的距离大约为94.6米.
本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
15、(1)见解析;(2)成立,见解析.
【解析】
(1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
(2)成立,延长BA到M,使AM=CE,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
【详解】
(1)证明:取AB的中点H,连接EH;如图1所示
∵四边形ABCD是正方形,AE⊥EF;
∴∠1+∠AEB=90°,∠2+∠AEB=90°
∴∠1=∠2,
∵BH=BE,∠BHE=45°,且∠FCG=45°,
∴∠AHE=∠ECF=135°,AH=CE,
在△AHE和△ECF中,
,
∴△AHE≌△ECF(ASA),
∴AE=EF;
(2)解:AE=EF成立,
理由如下:如图2,延长BA到M,使AM=CE,
∵∠AEF=90°,
∴∠FEG+∠AEB=90°.
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEG,
∴∠MAE=∠CEF.
∵AB=BC,
∴AB+AM=BC+CE,
即BM=BE.
∴∠M=45°,
∴∠M=∠FCE.
在△AME与△ECF中,
,
∴△AME≌△ECF(ASA),
∴AE=EF.
本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
16、(1)行驶普通火车客车所用的时间;(2)见解析.
【解析】
(1)根据题意可知x表达的是时间
(2)设普通火车客车的速度为,则高速列车的速度为,根据题意用总路程除以普通火车客车的速度-用总路程除以高速列车的速度=4,列出方程即可
【详解】
解:(1)行驶普通火车客车所用的时间
(2)解:设普通火车客车的速度为,则高速列车的速度为,由题意列方程得.
整理,得:
解,得:
经检验是原方程的根
因此高速列车的速度为
此题考查分式方程的应用,解题关键在于列出方程
17、(1)选择甲;(2)选择乙.
【解析】
(1)分别求出甲、乙的算术平均数进行选择即可;
(2)分别求出甲、乙的加权平均数进行选择.
【详解】
解:(1),
∵
∴选择甲;
(2)
∵
∴选择乙.
故答案为(1)选择甲;(2)选择乙.
本题考查了算术平均数和加权平均数的求法.
18、解:(1)见解析
(2)A;90;
(3)50
【解析】
试题分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF.
(2)∵△ADE≌△ABF,∴∠BAF=∠DAE.
而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.
∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到.
(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
【详解】
解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.
又∵点F是CB延长线上的点,∴∠ABF=90°.
在△ADE和△ABF中,∵,
∴△ADE≌△ABF(SAS).
(2)A;90.
(3)∵BC=8,∴AD=8.
在Rt△ADE中,DE=6,AD=8,∴.
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°.
∴△AEF的面积=AE2=×100=50(平方单位).
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故答案为:.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
20、
【解析】
试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.
21、2
【解析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.
【详解】
解:∵数据1,3,5,x的众数是3,
∴x=3,
则数据为1、3、3、5,
∴这组数据的平均数为:,
∴这组数据的方差为:;
故答案为:2.
本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.
22、1
【解析】
根据同类二次根式的定义得1+a=4-2a,然后解方程即可.
【详解】
解:根据题意得1+a=4-2a,
解得a=1.
故答案为:1.
本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
23、a=2或a<0 6或2
【解析】
可令y1=2x2,y2=a(x-t)2可分两种情况:①当y1与y2关于x=2对称时,可求出相应的a值为2,t值为6;②由于y1=2x2恒大于零,此时若y2恒小于零时,a<0,可得y2对称轴为x=2,即可求出相应的t值.
【详解】
解:设y1=2x2,y2=a(x﹣t)2
①当y1与y2关于x=2对称时,可得a=2,t=6
②在y=min{y1,y2}(x≠0)中,y1与y2没重合部分,即无论x为何值,y=y2
即y2恒小于等于y1,那么由于y对x=2对称,也即y2对于x=2对称,得a<0,t=2.
综上所述,a=2或a<0,对应的t值为6或2
故答案为:a=2或a<0,6或2
本题考查的是二次函数的图象与几何变换,先根据题意求出a的值是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
25、(1)详见解析;(2)当为直角三角形时,的长是或;(3).
【解析】
(1)先根据菱形的性质证,再证,由全等的性质可得,进而得出结论;
(2)分以下两种情况讨论:①,②;
(3)过作于,过作于,当三点在同一直线上且时的值最小,即为的长.
【详解】
解:(1)四边形是菱形,
,,
.
在和中,
,
,
.
(2)连接交于点,
四边形是菱形,
,.
又∠ABC=60°,∴△ABC为等边三角形,
∴,.
∴.
∴.
,
.
当时,有,
在中,
,
设,,
,
,解得.
.
.
当时,有,
由知,
是等腰直角三角形.
.
综上:当为直角三角形时,的长是或.
(3)过作于,过作于,
在中,
又是的中点,
.
当三点在同一直线上且时
的值最小,即为的长.
在中,
,,
,
∴.
的最小值是.
本题主要考查菱形的性质,等边三角形的判定,以及菱形中线段和的最值问题,综合性较强.
26、;85;1.(2)A校成绩好些. 校的方差,B校的方差.A校代表队选手成绩较为稳定.
【解析】
(1)根据平均数、众数、中位数的意见,并结合图表即可得出答案
(2)根据平均数和中位数的意见,进行对比即可得出结论
(3)根据方差的公式,代入数进行运算即可得出结论
【详解】
解:;85;1.
A校平均数= 分
A校的成绩:,众数为85分
B校的成绩:,中位数为1分
校成绩好些.因为两个队的平均数都相同,A校的中位数高,
所以在平均数相同的情况下中位数高的A校成绩好些.
校的方差,
B校的方差.
,
因此,A校代表队选手成绩较为稳定.
本题主要考查了平均数、众数、中位数、方差的意义,要注意找中位数要把数据从小到大进行排序,位于最中间的数或者两个数的平均数为中位数,以及注意众数可能不止一个是解题的关键
题号
一
二
三
四
五
总分
得分
成绩(分)
35
39
42
44
45
48
50
人数(人)
2
5
6
6
8
7
6
代数
几何
综合
甲
85
92
75
乙
70
83
90
平均数分
中位数分
众数分
A校
______
85
______
B校
85
______
100
2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年滁州凤阳县联考数学九上开学综合测试试题【含答案】: 这是一份2024-2025学年滁州凤阳县联考数学九上开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京市景山学校数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年北京市景山学校数学九上开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。