2024-2025学年山东省济宁邹城县联考数学九年级第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是( )
A.B.C.D.
2、(4分)如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是( )
A.B.C.D.
3、(4分)如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是( )
A.4B.6C.8D.10
4、(4分)已知点是平行四边形内一点(不含边界),设.若,则( )
A.B.
C.D.
5、(4分)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cmB.4cmC.5cmD.6cm
6、(4分)若代数式有意义,则x的取值范围是( )
A.x≥1B.x≥0C.x>1D.x>0
7、(4分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为( )
A.70°B.60°C.50°D.80°
8、(4分)一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算的结果是_____.
10、(4分)一组数据1,3,5,7,9的方差为________.
11、(4分)如果正数m的平方根为x+1和x-3,则m的值是_____
12、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
13、(4分)如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
15、(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
16、(8分)如图,在平行四边形中,点、别在,上,且.
(1)如图①,求证:四边形是平行四边形;
(2)如图②,若,且.,求平行四边形的周长.
17、(10分)如图,已知反比例函数 y=的图像经过点A(-1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.
(1)求a、k的值;
(2)若一次函数y=mx+n图像经过点A和反比例函数图像上另一点,且与x轴交于M点,求AM的值:
(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在一次数函数y=bx上,则b= ______.
18、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m-6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处
(1)求线段OD的长
(2)求点E的坐标
(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
20、(4分)如图,有一块矩形纸片ABCD,AB=8,AD=1.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF的长为________
21、(4分)若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.
22、(4分)如图,已知的顶点,,点在轴正半轴上,按以下步骤作图:①以点为圆心,适当长度为半径作弧,分别交边,于点,;②分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交边于点,则点的坐为__________.
23、(4分)函数中自变量x的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1).
(2).
25、(10分)(1)先化简,再求值:,其中;
(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.
26、(12分)为了了解同学们对垃圾分类知识的知晓程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校环保社团的同学们设计了“垃圾分类知识及投放情况”的问卷,并在本校随机抽取了若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部成绩分成A,B,C,D四组,并绘制了如下不完整的统计图表:
请根据上述统计图表,解答下列问题:
(1)共抽取了多少名学生进行问卷测试?
(2)补全频数分布直方图;
(3)如果测试成绩不低于81分者为“优秀”,请你估计全校2111名学生中,“优秀”等次的学生约有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
将分别与各个选项结合看看是否可以分解因式,即可得出答案.
【详解】
A.,此选项正确,不符合题意;
B.,此选项错误,符合题意;
C. ,此选项正确,不符合题意;
D. ,此选项正确,不符合题意.
故选B.
本题考查了因式分解,熟练掌握公式是解题的关键.
2、A
【解析】
分析:本题利用一次函数与方程组的关系来解决即可.
解析:两个函数的交点坐标即为方程组的解,由图知P( -4,-2 ),∴方程组的解为.
故选A.
点睛:方程组与一次函数的关系:两条直线相交,交点坐标即为两个函数解析式组成的方程组的解.本体关键是要记得这个知识点,然后看图直接给出答案.
3、A
【解析】
根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值.
【详解】
解:根据勾股定理可得a2+b2=9,
四个直角三角形的面积是:ab×1=9﹣1=8,
即:ab=1.
故选A.
考点:勾股定理.
4、D
【解析】
依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=60°,
∴∠BAM=60°-θ1,∠DCM=60°-θ3,
∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,
△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,
由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,
;
故选:D.
本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.
5、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
6、A
【解析】
二次根式有意义的条件是被开方数为非负数.
【详解】
解:∵二次根式有意义,
∴x-1≥0,
∴x≥1,
故选A.
本题考查了二次根式有意义的条件.
7、A
【解析】
根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.
【详解】
根据题意尺规作图得到NM是AC的垂直平分线,
故AD=CD,
∴∠DAC=∠C=30°,
∵∠B=50°,∠C=30°
∴∠BAC=180°-50°-30°=100°,
∴∠BAD=∠BAC-∠DAC=70°.
故选A.
此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.
8、C
【解析】
根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴商家更应该关注鞋子尺码的众数.
故选C.
本题考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】根据分式的加减法法则进行计算即可得答案.
【详解】原式=
=
=,
故答案为.
【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.
10、8
【解析】
根据方差公式S2= 计算即可得出答案.
【详解】
解:∵ 数据为1,3,5,7,9,
∴平均数为:=5,
∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
故答案为8.
本题考查方差的计算,熟记方差公式是解题关键.
11、4
【解析】
根据数m的平方根是x+1和x-3,可知x+1和x-3互为相反数,据此即可列方程求得x的值,然后根据平方根的定义求得m的值.
【详解】
由题可得(x+1)+(x-3)=0,解得x=1,则m=(x+1)2=22=4.
所以m的值是4.
本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
12、1
【解析】
平移的距离为线段BE的长求出BE即可解决问题;
【详解】
∵BC=EF=5,EC=3,
∴BE=1,
∴平移距离是1,
故答案为:1.
本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
13、1
【解析】
分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.
详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
△ABC∽△EDC,
则,
即,
解得:DE=1,
故答案为1.
点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.
三、解答题(本大题共5个小题,共48分)
14、(1)100;;(2)补图见解析;(3)240人.
【解析】
根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有.
【详解】
解:在这次调查中,一共抽取学生名,
图中等级为D级的扇形的圆心角等于,
故答案为100、;
等级人数为名,
补全图形如下:
估计该校等级为C级的学生约有人.
本题考核知识点:统计图,由样本估计总体. 解题关键点:从统计图获取信息.
15、(1)直线AB的解析式为y=1x﹣1,
(1)点C的坐标是(1,1).
【解析】
待定系数法,直线上点的坐标与方程的.
(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.
(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
【详解】
解:(1)设直线AB的解析式为y=kx+b,
∵直线AB过点A(1,0)、点B(0,﹣1),
∴,解得.
∴直线AB的解析式为y=1x﹣1.
(1)设点C的坐标为(x,y),
∵S△BOC=1,∴•1•x=1,解得x=1.
∴y=1×1﹣1=1.
∴点C的坐标是(1,1).
16、 (1)见解析;(2)16.
【解析】
(1)根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可;
(2)由勾股定理可求BC的长,即可求平行四边形ABCD的周长.
【详解】
证明:(1)四边形是平行四边形,
,,
,
,
,
四边形是平行四边形.
(2),.,
,
平行四边形的周长
本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.
17、(1),;(2);(3).
【解析】
(1)根据点A的坐标以及三角形的面积公式即可求出a值,再根据反比例函数图象上点的坐标特征即可求出k的值;
(2)根据反比例函数解析式可求出点C的坐标,由点A、C的坐标利用待定系数法即可求出直线AM的解析式,令线AM的解析式中y=0求出x值,即可得出点M的坐标,再利用勾股定理即可求出线段AM的长度;
(3)设点N的坐标为(m,n),由等边三角形的性质结合两点间的距离公式即可得出关于m、n的二元二次方程组,解方程组即可得出n与m之间的关系,由此即可得出b值.
【详解】
解:(1)∵,
∴,
∴,
∴把A点的坐标为,
代入得;
(2)∵在反比例函数的图象上,
∴,
∴,
∴,
将,代入y=mx+n中,
得 ,解得: ,
∴直线AM解析式为:,
当时,,
∴,
在中,,,
∴;
(3)设点N的坐标为(m,n),
∵△AMN为等边三角形,且AM=,A(-1,),M(2,0),
∴,
解得:,
∵顶点N(m,n)在一次函数y=bx上,
∴b=.
本题考查了三角形的面积公式、反比例函数图象上点的坐标特征、勾股定理以及解二元二次方程组,解题的关键是:(1)求出点A的坐标;(2)求出点M的坐标;(3)根据等边三角形的性质找出关于m、n的二元二次方程组.本题属于中档题,难度不大,解决该题型题目时,根据等边三角形的性质利用两点间的距离公式找出点的横纵坐标之间的关系是关键.
18、(1)OD=3;(2)E点(,)(3)点N为(,0)或(,0)
【解析】
(1)根据非负性即可求出OA,OC;根据勾股定理得出OD长;
(2)由三角形面积求法可得,进而求出EG和DG,即可解答;
(3)由待定系数法求出DE的解析式,进而求出M点坐标,再利用平行四边形的性质解答即可.
【详解】
解:(1)∵线段OA,OC的长分别是m,n且满足
∴OA=m=6,OC=n=8;
设DE=x,由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8-OD=8-x,
=10,
可得:EC=10-AE=10-6=4,
在Rt△DEC中,由勾股定理可得:DE2+EC2=DC2,
即x2+42=(8-x)2,
解得:x=3,
可得:DE=OD=3,
(2)过E作EG⊥OC,
在Rt△DEC中,
,
即
解得:EG=,
在Rt△DEG中,,
∴OG=3+=,
所以点E的坐标为(,),
(3)
设直线DE的解析式为:y=ax+c,把D(3,0),E(4.8,2.4)代入解析式可得:
,
解得:,
所以DE的解析式为:,
把y=6代入DE的解析式,可得:x=,
即AM=,
当以M、A、N、C为顶点的四边形是平行四边形时,
CN=AM=,
所以ON=8+=,ON'=8-=,
即存在点N,且点N的坐标为(,0)或(,0).
本题是一次函数综合题目,考查了非负性、用待定系数法求一次函数的解析式、勾股定理、平行四边形的性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过求一次函数的解析式和平行四边形的性质才能得出结果.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8.
【解析】
由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.
【详解】
由作法得AE平分∠BAD,AB=AF,
则∠1=∠2,
∵四边形ABCD为平行四边形,
∴BE∥AF,∠BAF=∠C=60°,
∴∠2=∠BEA,
∴∠1=∠BEA=30°,
∴BA=BE,
∴AF=BE,
∴四边形AFEB为平行四边形,△ABF是等边三角形,
而AB=AF,
∴四边形ABEF是菱形;
∴BF⊥AE,AG=EG,
∵四边形ABEF的周长为16,
∴AF=BF=AB=4,
在Rt△ABG中,∠1=30°,
∴BG=AB=2,AG=BG=2,
∴AE=2AG=,
∴菱形ABEF的面积;
故答案为:
本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF是菱形是解题的关键.
20、2
【解析】
根据折叠的性质,在第二个图中得到DB=8-1=2,∠EAD=45°;在第三个图中,得到AB=AD-DB=1-2=4,△ABF为等腰直角三角形,然后根据等腰三角形的性质和矩形的性质得到BF=AB=4,再由CF=BC-BF即可求得答案.
【详解】
∵AB=8,AD=1,纸片折叠,使得AD边落在AB边上(第二个图),
∴DB=8-1=2,∠EAD=45°,
又∵△AED沿DE向右翻折,AE与BC的交点为F(第三个图),
∴AB=AD-DB=1-2=4,△ABF为等腰直角三角形,
∴BF=AB=4,
∴CF=BC-BF=1-4=2,
故答案为:2.
本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.
21、14
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
解:根据对角线的长可以求得菱形的面积,
根据S=ab=×6×8=14cm1,
故答案为14.
22、
【解析】
根据勾股定理可得Rt△AOH中,AO=,根据∠AGO=∠AOG,即可得到AG=AO=,进而得到HG=-1,故可求解.
【详解】
如图,∵的顶点,,
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可知,OF平方∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=-1,
∴G
故填:.
此题主要考查坐标与图形,解题的关键是熟知等腰三角形和勾股定理的性质运用.
23、
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.
【详解】
解:要使在实数范围内有意义,必须.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)直接利用算术平方根以及立方根性质分别化简再计算即可得出答案.
(2)直接利用二次根式的混合运算法则,先用完全平方公式和平方差公式计算,再化简得出答案.
【详解】
解:(1)
;
(2)
.
此题主要考查了实数运算,正确化简各数是解题关键.
25、 (1)-;(2)
【解析】
(1)直接将括号里面通分运算,进而结合分式的加减运算法则计算得出答案;
(2)根据题意得出不等式组,进而得出答案.
【详解】
解:(1)
当时,代入得:原式
(2)解:根据题意得,
解得:,
∴原不等式组的解集是﹐
∴a的取值范围是﹒
此题主要考查了分式的化简求值以及不等式组的解法,正确掌握分式的混合运算法则是解题关键.
26、(1)61(名);(2)见解析;(3)估计全校2111名学生中,“优秀”等次的学生约有1111人.
【解析】
(1)利用频数÷频率=总人数,即可解答.
(2)A组频数 61-(24+18+12)=6,补全见答案;
(3)先求出不低于81分者为“优秀”的百分比,再利用总人数乘以“优秀”等次的学生数的百分比,即可解答.
【详解】
解:(1)24÷1.4=61(名)
答:共抽取了61名学生进行问卷测试;
(2)A组频数 61-(24+18+12)=6,
补全如下
(3)2111×=1111(人)
答:估计全校2111名学生中,“优秀”等次的学生约有1111人.
此题考查条形统计图和统计表.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据.
题号
一
二
三
四
五
总分
得分
批阅人
尺码
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
20
4
5
5
中学生综合素质评价成绩
中学生综合素质评价等级
A级
B级
C级
D级
组别
分数段
频数
频率
A
61≤x<71
a
b
B
71≤x<81
24
1.4
C
81≤x<91
18
c
D
91≤x<111
12
1.2
2024-2025学年山东省临沂临沭县联考九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年山东省临沂临沭县联考九年级数学第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省聊城阳谷县联考九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年山东省聊城阳谷县联考九年级数学第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省济宁梁山县联考数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省济宁梁山县联考数学九上开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。