2024-2025学年江苏省盐城市东台市三仓镇区中学九上数学开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点O为原点,直线y=kx+b交x轴于点A(﹣2,0),交y轴于点B.若△AOB的面积为8,则k的值为( )
A.1B.2C.﹣2或4D.4或﹣4
2、(4分)下列命题中,是假命题的是( )
A.过边形一个顶点的所有对角线,将这个多边形分成个三角形
B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点
C.三角形的中线将三角形分成面积相等的两部分
D.一组对边平行另一组对边相等的四边形是平行四边形
3、(4分)某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是( )
A.平均数B.中位数C.众数D.方差
4、(4分)如图,中,是斜边上的高, ,那么等于( )
A.B.C.D.
5、(4分)关于函数y=﹣x+3,下列结论正确的是( )
A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限
C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大
6、(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是( )
A.10B.11C.12D.13
7、(4分)如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为( )
A.6B.8C.4D.
8、(4分)下列运算正确的是( ).
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=_____.
10、(4分)如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为_________.
11、(4分)已知:如图,、分别是的中线和角平分线,,,则的长等于__.
12、(4分)在△ABC中,若∠A,∠B满足|csA-|+(sinB-)2=0,则∠C=_________.
13、(4分)某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为分、分、分,则小明的数学期末总评成绩为________分.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,一次函数的图象交轴、轴分别于两点,交直线于。
(1)求点的坐标;
(2)若,求的值;
(3)在(2)的条件下,是线段上一点,轴于,交于,若,求点的坐标。
15、(8分)如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
16、(8分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.
(1)求第一批每支钢笔的进价是多少元?
(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
17、(10分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.
(1)求5张白纸粘合后的长度;
(2)设x张白纸粘合后总长为ycm.写出y与x之间的函数关系式;
(3)求当x=20时的y值,并说明它在题目中的实际意义.
18、(10分)二次根式计算:
(1);
(2);
(3)()÷;
(4).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把多项式n(n﹣2)+m(2﹣n)分解因式的结果是_____.
20、(4分)如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.
(1)则菱形的边长为______.
(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.
21、(4分)如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.
22、(4分)在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为,那么苹果树面积占总种植面积的___.
23、(4分)在中,,,,则斜边上的高为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点,在上,,,,试判断与有怎样的数量和位置关系,并说明理由.
25、(10分)如图,已知二次函数的图象顶点在轴上,且,与一次函数的图象交于轴上一点和另一交点.
求抛物线的解析式;
点为线段上一点,过点作轴,垂足为,交抛物线于点,请求出线段的最大值.
26、(12分)解不等式组:,并把它的解集在数轴上表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
令x=0,y=b,∴B(0,b),∴OB=|b|,
∵A(-2,0),∴OA=2,
∴S△AOB=OA·OB=8,即×2×|b|=8,|b|=8,b=±8.
∴B(0,8)或B(0,-8),
①设y=kx+8,将A(-2,0)代入解析式得-2k+8=0,k=4;
②设y=kx-8,将A(-2,0)代入解析式得-2k-8=0,k=-4;
∴k=4或-4.
故选D.
点睛:将点的坐标转化为线段的长度时注意符号问题.
2、D
【解析】
根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.
【详解】
解:A、过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形,所以A选项为真命题;
B、三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;
C、三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;
D、一组对边平行且相等的四边形是平行四边形,而一组对边平行另一组对边相等的四边形可以是梯形,所以D选项为假命题.
故选:D.
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
3、C
【解析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
4、C
【解析】
根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC∽△CDB,列比例式可得结论.
【详解】
解:∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD是高,
∴∠ADC=∠CDB=90°,
∴∠ACD+∠CAD=90°,
∴∠DCB=∠CAD,
∴△ADC∽△CDB,
∴CD2=AD•BD,
∵AD=9,BD=4,
∴CD=6
故选:C.
本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.
5、C
【解析】
根据一次函数的性质对各选项进行逐一判断即可.
【详解】
解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;
B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误;
C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;
D、∵k=-1<0,∴y随x的增大而减小,故本选项错误,
故选C.
本题考查了一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.
6、C
【解析】
根据多边形的内角和定理:(n−2)×180°求解即可.
【详解】
解:由题意可得:180°•(n﹣2)=150°•n,
解得n=1.
故多边形是1边形.
故选:C.
主要考查了多边形的内角和定理.n边形的内角和为:(n−2)×180°.此类题型直接根据内角和公式计算可得.
7、A
【解析】
根据三角形中位线的性质得出DE的长度,然后根据EF=DF,DE+EF=DF求出DF的长度.
【详解】
解:∵D、E分别为AB和AC的中点,
∴DE=BC=4,
∵EF=DF,DE+EF=DF,
∴DF=6,
∴选A.
本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.
8、C
【解析】
根据二次根式的性质和法则逐一计算即可判断.
【详解】
A. 是同类二次根式,不能合并,此选项错误;
B. =18,此选项错误;
C. ,此选项正确;
D.,此选项错误;
故选:C
本题考查二次根式的混合运算,熟练掌握计算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
设,根据正方形的性质、平行四边形的面积公式分别表示出,,,根据题意计算即可.
【详解】
解:设DB=x,
则S1=x1,S1==1x1,S3= 1x×1x=4x1.
由题意得,S1+S3=15,即x1+4x1=15,
解得x1=3,
所以S1=1x1=2,
故答案为:2.
本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是是解题的关键.
10、17米.
【解析】
试题分析:根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.
试题解析:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,
在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,
解得:x=17,
即旗杆的高度为17米.
故答案为17米.
考点: 勾股定理的应用.
11、
【解析】
过D点作DF∥BE,则DF=BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC=AF.
【详解】
过点作,
是的中线,,
为中点,,
,则,,
是的角平分线,,
,
为中点,
为中点,
,
.
故答案为:.
本题考查了三角形中线、三角形中位线定理和角平分线的性质以及勾股定理的应用,作出辅助线构建直角三角形是解题的关键.
12、75°
【解析】
【分析】根据绝对值及偶次方的非负性,可得出csA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.
【详解】∵|csA-|+(sinB-)2=0,
∴csA=,sinB=,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=75°,
故答案为:75°.
【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出csA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.
13、1
【解析】
按统计图中各部分所占比例算出小明的期末数学总评成绩即可.
【详解】
解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=1(分).
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2);(3)点的坐标为.
【解析】
(1)分别代入x=0、y=0求出y、x的值,由此可得出点B. A的坐标;
(2)设点P的坐标为(x,y),利用一次函数图象上点的坐标特征结合等腰三角形的性质可得出点P的坐标,再由点P在直线y=kx上利用一次函数图象上点的坐标特征可求出k值;
(3)设点C的坐标为(x,− x+2),则点D的坐标为(x,x),点E的坐标为(x,0),进而可得出CD、DE的长度,由CD=2DE可得出关于x的一元一次方程,解之即可得出结论
【详解】
解:(1)当时,,
当时,,
,
;
(2)设,因为点在直线,且,
,
把代入,所以点的坐标是,
因为点在直线上,所以;
(3)设点,则,,
因为,,
解得:,则,
所以点的坐标为.
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于分别代入x=0、y=0
15、(1)详见解析;(2).
【解析】
(1)根据AD//BE可得∠DAE=∠E,由AE平分∠BAD可得∠DAE=∠EAB进而可得∠EAB=∠E,即可证明CD=BE.(2)根据平行四边形的性质可知AD=DF,由DF=CF,∠DAF=∠E,∠ADF=∠FCE可证明△ADF≌△ECF,得AF=EF,由DG是等腰三角形ADF的高可知AG=GF,根据勾股定理可求出AG的长,由AE=2AF求出AE的长即可.
【详解】
(1)∵四边形ABCD是平行四边形,
∴CD//AB,
∴∠DAE=∠E,
∵AE平分∠BAD,
∴∠DAE=∠EAB,
∴∠EAB=∠E,
∴CD=BE.
(2)∵CD//AB.
∴∠BAF=∠DFA.
∵AE平分∠BAD,
∴∠DAE=∠EAB,
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC中点,AB=4,
∴DF=CF=AD=2,
∵DG⊥AE,DG=1,
∴AG=GF=,AF=2AG=2,
∵∠DAF=∠E,∠ADF=∠FCE,DF=CF.
∴△ADF≌△ECF.
∴AF=EF.
∴AE=2AF=4.
本题考查平行四边形的性质,勾股定理及全等三角形的判定等,熟练掌握相关知识是解题关键.
16、(1)15元;(2)1支.
【解析】
试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;
(2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.
试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:
﹣=10
解得:x=15,经检验,x=15是方程的解.
答:第一批文具盒的进价是15元/只.
(2)设销售y只后开始打折,根据题意得:
(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.
答:至少销售1只后开始打折.
点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
17、(1)1cm;(2)y=17x+2;(2)242cm
【解析】
(1)根据图形可得5张白纸的长减去粘合部分的长度即可;
(2)根据题意x张白纸的长减去粘合部分的长度就是y的值;
(2)把x=20代入(2)得到的函数解析式即可求解.
【详解】
解:(1)由题意得,20×5-2×(5-1)=1.
则5张白纸粘合后的长度是1cm;
(2)y=20x-2(x-1),即y=17x+2.
(2)当x=20时,y=17×20+2=242.
答:实际意义是:20张白纸粘合后的长度是242cm.
本题考查了函数的关系式,正确理解纸条的长度等于白纸的长度减去粘合部分的长度是关键.
18、(1)8;(2);(3);(4)1.
【解析】
(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(2)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(3)首先化简二次根式,进而利用二次根式除法运算法则得出答案;
(4)直接利用平方差公式计算得出答案.
【详解】
(1)=3+5=8;
(2),
=,
=;
(3)()÷
=
=;
(4),
=,
=12﹣1,
=1.
此题考查二次根式的加减法计算,混合运算,乘法公式,将每个二次根式正确化简成最简二次根式,再根据运算法则进行计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(n﹣2)(n﹣m).
【解析】
用提取公因式法分解因式即可.
【详解】
n(n﹣2)+m(2﹣n)= n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).
故答案为(n﹣2)(n﹣m).
本题考查了用提公因式法进行因式分解;一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
20、25;
【解析】
(1)过F作于,根据等腰三角形的性质可得.
(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.
【详解】
(1)如图,过F作于,设,由题意衣架外延长度为得,
当时,外延长度为.则.
则有,
∴,
∴.
∵
∴菱形的边长为25cm
故答案为:25cm
(2)作等边,等边,
∴EM=EP, EH=EQ
∴,
∴,,
∴,
当、、、共线时,最小,
易知,
∵,
∴的最小值为.
本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
21、
【解析】
过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值
【详解】
如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,
∵四边形OABC为平行四边形,
∴CD∥OE,且DE∥OC,
∴四边形DCOE为平行四边形,
∵C(2,5),
∴OM=2,CM=5,
由图可得,S△AOC=S△ABC=S▱ABCO,
又∵S△FCP=S△DCP且S△AEP=S△AGP,
∴S▱OEPF=S▱BGPD,
∵四边形BCFG的面积为10,
∴S▱CDEO=S▱BCFG=10,
∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,
∴CD=MN=2,
∴ON=OM+MN=2+2=4,DN=CM=5,
∴D(4,5),
∵反比例函数y=图象过点D,
∴k=4×5=20.
故答案为:20.
本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.
22、30%.
【解析】
因为圆周角是360°,种植苹果树面积的扇形圆心角是108°,说明种植苹果树面积占总面积的108°÷360°=30%.据此解答即可.
【详解】
由题意得:种植苹果树面积占总面积的:108°÷360°=30%.
故答案为:30%.
本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的分率等于该部分所对应的扇形圆心角的度数与360°的比值.
23、
【解析】
利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案
【详解】
解:设斜边上的高为h,
在Rt△ABC中,利用勾股定理可得:
根据三角形面积两种算法可列方程为:
解得:h=2.4cm,
故答案为2.4cm
本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
根据平行线的性质得到,由得到,推出,根据全等三角形的性质得到,,由平行线的判定即可得到结论.
【详解】
解:与平行且相等,理由:
因为,所以.
因为,所以.
又因为,
所以.
所以,.
所以.
本题考查平行线的判定与性质,全等三角形的判定与性质.熟练掌握性质定理和判定定理是解题的关键.注意数形结合思想的应用.
25、 (1) ;(2)线段的最大值为.
【解析】
(1)根据题意首先计算A、B点的坐标,设出二次函数的解析式,代入求出参数即可.
(2)根据题意设F点的横坐标为m,再结合抛物线和一次函数的解析式即可表示F、D的纵坐标,所以可得DF的长度,使用配方法求解出最大值即可.
【详解】
解:,二次函数与一次函数的图象交于轴上一点,
点为,点为.
二次函数的图象顶点在轴上.
设二次函数解析式为.
把点代入得,
.
抛物线的解析式为,即.
设点坐标为,点坐标为.
.
当时,即,解得.
点为线段上一点,
.
当时,线段的最大值为.
本题主要考查二次函数的性质,关键在于利用配方法求解抛物线的最大值,这是二次函数求解最大值的常用方法,必须熟练掌握.
26、,解集在数轴上表示如图见解析.
【解析】
先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
解:由①得:
由②得:
不等式组解集为
解集在数轴上表示如图:
本题考查了解一元一次不等式组的应用,解此题的关键是能求出不等式组的解集,难度适中.
题号
一
二
三
四
五
总分
得分
批阅人
型号
22.5
23
23.5
24
24.5
销量(双)
5
10
15
8
3
2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省盐城市东台市三仓镇区中学2023-2024学年数学九上期末统考试题含答案: 这是一份江苏省盐城市东台市三仓镇区中学2023-2024学年数学九上期末统考试题含答案,共10页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。
江苏省盐城市东台市三仓镇区中学2023-2024学年八上数学期末学业质量监测模拟试题含答案: 这是一份江苏省盐城市东台市三仓镇区中学2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了如图,已知,,则的度数是,在平面直角坐标系中,点P,下列计算中正确的是等内容,欢迎下载使用。