年终活动
搜索
    上传资料 赚现金

    江苏省盐城市南洋中学2025届数学九上开学教学质量检测试题【含答案】

    江苏省盐城市南洋中学2025届数学九上开学教学质量检测试题【含答案】第1页
    江苏省盐城市南洋中学2025届数学九上开学教学质量检测试题【含答案】第2页
    江苏省盐城市南洋中学2025届数学九上开学教学质量检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省盐城市南洋中学2025届数学九上开学教学质量检测试题【含答案】

    展开

    这是一份江苏省盐城市南洋中学2025届数学九上开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程( )
    A.=15B.
    C.D.
    2、(4分)如图,直线y=x+b与直线y=kx+b交于点P(3,5),则关于x的不等式x+b>kx+6的解集是( )
    A.x>3B.x<3C.x≥3D.x≤3
    3、(4分)方程的解是
    A.B.C.或D.或
    4、(4分)下列四组线段中,可以构成直角三角形的是( )
    A.4,5,6B.2,3,4C.1,1,D.
    5、(4分)方程的左边配成完全平方后所得方程为( )
    A.B.C.D.
    6、(4分)如果反比例函数y=的图象经过点(-1,-2),则k的值是 ( )
    A.2B.-2C.-3D.3
    7、(4分)如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间距离等于23米,则A、C两点间的距离为( )
    A.46B.23C.50D.25
    8、(4分)若,则( )
    A.7B.-7C.5D.-5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,的中位线,把沿折叠,使点落在边上的点处,若、两点之间的距离是,则的面积为______;
    10、(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.
    11、(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.
    12、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.
    13、(4分)化简:= .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.
    (1)求证:△BDE≌△BAC;
    (2)求证:四边形ADEG是平行四边形.
    (3)直接回答下面两个问题,不必证明:
    ①当△ABC满足条件_____________________时,四边形ADEG是矩形.
    ②当△ABC满足条件_____________________时,四边形ADEG是正方形?
    15、(8分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)
    16、(8分)先化简,再求值:.其中a=3+.
    17、(10分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.
    18、(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3),B(﹣3,1),C(﹣1,3).
    (1)请按下列要求画图:
    ①平移△ABC,使点A的对应点A1的坐标为(﹣4,﹣3),请画出平移后的△A1B1C1;
    ②△A1B1C1与△ABC关于原点O中心对称,画出△A1B1C1.
    (1)若将△A1B1C1绕点M旋转可得到△A1B1C1,请直接写出旋转中心M点的坐标 .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知y是x的一次函数下表列出了部分对应值,则m=_______
    20、(4分)如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.
    21、(4分)已知,,则2x3y+4x2y2+2xy3=_________.
    22、(4分)已知:,则_______.
    23、(4分)阅读下面材料:
    小明想探究函数的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:
    小聪看了一眼就说:“你画的图象肯定是错误的.”
    请回答:小聪判断的理由是 .请写出函数的一条性质: .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知长方形的长,宽.
    (1)求长方形的周长;
    (2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
    25、(10分)某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:
    (1)根据图示填写下表
    (2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
    (3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
    26、(12分)化简或求值:
    (1)化简:;
    (2)先化简,再求值:,其中.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    解:设走路线A时的平均速度为x千米/小时,根据题意得:﹣=.故选D.
    2、A
    【解析】
    利用函数图象,写出直线y=x+b在直线y=kx+1上方所对应的自变量的范围即可.
    【详解】
    根据图象得当x>3时,x+b>kx+1.
    故选:A.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    3、C
    【解析】
    方程移项后,利用因式分解法求出解即可.
    【详解】
    解:(x-2)2=3(x-2),
    (x-2)2-3(x-2)=0,
    (x-2)(x-2-3)=0,
    x-2=0,x-2-3=0,
    x1=2,x2=1.
    故选C.
    本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
    4、C
    【解析】
    求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A.,不能构成直角三角形,故选项错误;
    B.,不能构成直角三角形,故选项错误;
    C.,能构成直角三角形,故选项正确;
    D.,不能构成直角三角形,故选项错误.
    故选:C.
    本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.
    5、A
    【解析】
    根据配方法的步骤对方程进行配方即可.
    【详解】
    解:移项得:x2+6x=5,
    配方可得:x2+6x+9=5+9,
    即(x+3)2=14,
    故选:A.
    本题考查用配方法解一元二次方程.熟练掌握用配方法解一元二次方程的具体步骤是解决此题的关键.
    6、D
    【解析】
    此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.
    【详解】
    根据题意,得 -2=,即2=k-1,
    解得,k=1.
    故选D.
    考点:待定系数法求反比例函数解析式.
    7、A
    【解析】
    试题分析:∵点EF分别是BA和BC的中点,
    ∴EF是△ABC的中位线,
    ∴AC=2EF=2×23=46米.
    故选A.
    考点:三角形中位线定理.
    8、D
    【解析】
    根据多项式乘多项式的运算法则进行计算,确定出p、q的值即可求出答案.
    【详解】
    因为,所以,
    所以
    故答案选D.
    本题考查的是多项式乘多项式的运算,能够准确计算解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、40.
    【解析】
    根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.
    【详解】
    解:如图,连接AF,
    ∵DE为△ABC的中位线,
    ∴DE//BC,BC=2DE=10cm.
    由折叠的性质可得:,
    ∴,
    ∴.
    故答案是40.
    本题考查翻折变换(折叠问题), 三角形中位线定理.在三角形底已知的情况下要求三角形的面积,只需要求出它的高即可,本题解题关键是连接AF,证明AF为△ABC的高.
    10、1
    【解析】
    如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.
    【详解】
    解:如图,作PH⊥OB于H.
    ∵∠POA=∠POB,PH⊥OB,PD⊥OA,
    ∴PH=PD=3cm,
    ∵PC∥OA,
    ∴∠POA=∠CPO=15°,
    ∴∠PCH=∠COP+∠CPO=30°,
    ∵∠PHC=90°,
    ∴PC=2PH=1cm.
    故答案为1.
    本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    11、1
    【解析】
    解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.
    【详解】
    解:,
    解①得,x<5;
    解②得,
    ∴不等式组的解集为;
    ∵不等式有且只有四个整数解,
    ∴,
    解得,﹣1<a≤1;
    解分式方程得,y=1﹣a;
    ∵方程的解为非负数,
    ∴1﹣a≥0;即a≤1;
    综上可知,﹣1<a≤1,
    ∵a是整数,
    ∴a=﹣1,0,1,1;
    ∴﹣1+0+1+1=1
    故答案为1.
    本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可
    12、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故答案为:.
    本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    13、2
    【解析】
    根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
    【详解】
    ∵22=4,∴=2.
    本题考查求算术平方根,熟记定义是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC=
    【解析】
    (1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;
    (2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;
    (3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;
    ②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:ACAB.
    【详解】
    (1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).
    在△BDE和△BAC中,∵,∴△BDE≌△BAC(SAS);
    (2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.
    ∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.
    ∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).
    (3)①当四边形ADEG是矩形时,∠DAG=90°.
    则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;
    ②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.
    由①知,当∠DAG=90°时,∠BAC=135°.
    ∵四边形ABDI是正方形,∴ADAB.
    又∵四边形ACHG是正方形,∴AC=AG,∴ACAB,∴当∠BAC=135°且ACAB时,四边形ADEG是正方形.
    本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.
    15、需要m的铁棍.
    【解析】
    根据图中的几何关系,然后由菱形的四边相等可以求出答案.
    【详解】
    由题意,知两个大菱形的边长为: (m) .
    小菱形的边长为: (m) .
    所以三个菱形的周长的和为:(m) .
    所以所需铁棍的总长为:1.8×9+2.4×2+2=m .
    答:需要m的铁棍.
    本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.
    16、a﹣3,
    【解析】
    根据题意对原式利用乘法分配律计算得到最简结果,把a的值代入计算即可求出值.
    【详解】
    解:
    =﹣•
    =2(a﹣1)﹣(a+1)
    =2a﹣2﹣a﹣1
    =a﹣3,
    当a=3+时,原式=3+﹣3=.
    本题考查分式的化简求值,熟练掌握分式混合运算法则是解答本题的关键.
    17、见解析
    【解析】
    分析:利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.
    详解:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE.
    ∵DF⊥AE,∴∠AFD=∠B=90°.在△ABE和△DFA中,

    ∴△ABE≌△DFA,∴AB=DF.
    点睛:本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.
    18、(1)①见解析②见解析(1)(0,﹣3)
    【解析】
    (1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;
    ②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可;
    (1)连接B1B1,C1C1,交点就是旋转中心M.
    【详解】
    (1)①如图所示,△A1B1C1即为所求;
    ②如图所示,△A1B1C1即为所求;
    (1)如图,连接C1C1,B1B1,交于点M,则△A1B1C1绕点M旋转180°可得到△A1B1C1,
    ∴旋转中心M点的坐标为(0,﹣3),
    故答案为(0,﹣3).
    本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    设一次函数解析式为y=kx+b,把两组对应值分别代入得到k、b的方程组,然后解方程组求出k、b的值,则可确定一次函数解析式,再计算自变量为0时的函数值即可.
    【详解】
    解:设一次函数解析式为y=kx+b,
    把x=1,y=3;x=2,y=5代入得 ,解得
    所以一次函数的解析式为:y=2x+1
    当x=0时,y=2x+1=1,即m=1.故答案为1.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的直代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    20、
    【解析】
    设M,N为CO,EF中点, 点到动直线的距离为ON,求解即可.
    【详解】

    ∴SOABC=12
    ∵将矩形分为面积相等的两部分
    ∴SCEOF=×(CE+OF)×2=6
    ∴CE+OF=6
    设M,N为CO,EF中点,
    ∴MN=3
    点到动直线的距离的最大值为ON=
    故答案.
    本题考查的是的动点问题,熟练掌握最大距离的算法是解题的关键
    21、-25
    【解析】
    先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.
    【详解】
    ∵,,
    ∴2x3y+4x2y2+2xy3
    =2xy(x2+2xy+y2)
    =2xy(x+y)2
    =2×() ×52
    =-25.
    故答案为-25.
    此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.
    22、
    【解析】
    由题意设,再代入代数式求值即可.
    【详解】
    由题意设,,则
    考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.
    23、如:因为函数值不可能为负,所以在x轴下方不会有图象; 当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大
    【解析】
    【分析】结合函数解析式y的取值范围可判断图象的大概情况,从函数图象可得出相关信息.
    【详解】
    (1). 因为,函数值不可能为负,所以在x轴下方不会有图象,所以是错的;
    (2).根据函数的图象看得出: 当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大.
    故答案为(1).如:因为函数值不可能为负,所以在x轴下方不会有图象; (2). 当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大
    【点睛】本题考核知识点:函数的图象.解题关键点:从函数图象获取信息.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)长方形的周长大.
    【解析】
    试题分析:(1)代入周长计算公式解决问题;
    (2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.
    试题解析:
    (1)
    ∴长方形的周长为 .
    (2)长方形的面积为:
    正方形的面积也为4.边长为
    周长为:

    ∴长方形的周长大于正方形的周长.
    25、(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定.
    【解析】
    (1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
    (2)在平均数相同的情况下,中位数高的成绩较好;
    (3)根据方差公式计算即可:S2=(可简单记忆为“等于差方的平均数”)
    【详解】
    解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100,
    二班5名选手的复赛成绩为:70、100、100、75、80,
    一班的众数为85,
    一班的平均数为(75+80+85+85+100)÷5=85,
    二班的中位数是80;
    故填: 85、85 80
    (2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)
    (3)S二班2=
    因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.
    本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.
    26、(1);(2),.
    【解析】
    (1)根据分式的减法和乘法可以化简题目中的式子;
    (2)根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)


    (2)
    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    题号





    总分
    得分
    x

    -3
    -2
    -1
    1
    2
    3

    y

    2.83
    1.73
    0
    0
    1.73
    2.83

    班级
    中位数(分)
    众数(分)
    平均数(分)
    一班
    85
    二班
    100
    85
    班级
    中位数(分)
    众数(分)
    平均数(分)
    一班
    85
    85
    85
    二班
    80
    100
    85

    相关试卷

    江苏省盐城市东台实验中学2025届数学九上开学检测试题【含答案】:

    这是一份江苏省盐城市东台实验中学2025届数学九上开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省盐城市2025届九上数学开学质量检测模拟试题【含答案】:

    这是一份江苏省盐城市2025届九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省泰州市民兴实验中学2024年九上数学开学教学质量检测模拟试题【含答案】:

    这是一份江苏省泰州市民兴实验中学2024年九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map