2024年江苏省盐城市东台市三仓镇区中学数学九年级第一学期开学监测试题【含答案】
展开
这是一份2024年江苏省盐城市东台市三仓镇区中学数学九年级第一学期开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为( )
A.7B.9C.3D.4
2、(4分)已知,如图,,,,的垂直平分交于点,则的长为( )
A.B.C.D.
3、(4分)若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的
A.2倍 B.3倍 C.4倍 D.5倍
4、(4分)下列说法错误的是
A.必然事件发生的概率为B.不可能事件发生的概率为
C.有机事件发生的概率大于等于、小于等于D.概率很小的事件不可能发生
5、(4分)小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是( )
A.B.C.D.
6、(4分)在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )
A.18,18,1B.18,17.5,3C.18,18,3D.18,17.5,1
7、(4分)直角三角形的两边为 9 和 40,则第三边长为( )
A.50B.41C.31D.以上答案都不对
8、(4分)化简的结果是( )
A.a-bB.a+bC.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数,那么__________
10、(4分)如图,点E,F分别在x轴,y轴的正半轴上.点在线段EF上,过A作分别交x轴,y轴于点B,C,点P为线段AE上任意一点(P不与A,E重合),连接CP,过E作,交CP的延长线于点G,交CA的延长线于点D.有以下结论①,②,③,④,其中正确的结论是_____.(写出所有正确结论的番号)
11、(4分)如图,在中,已知,,平分,交边于点E,则 ___________ .
12、(4分)如图,四边形ABCD沿直线AC对折后重合,如果AC,BD交于O,AB∥CD,则结论①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正确的结论是___(填序号).
13、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简:,然后给a选择一个你喜欢的数代入求值.
15、(8分)解下列方程:
(1)=.
(2)=1-.
16、(8分)如图,在矩形中,是上一点,垂直平分,分别交、、于点、、,连接、.
(1)求证:;
(2)求证:四边形是菱形;
(3)若,为的中点,,求的长.
17、(10分)如图,在四边形中,,点为的中点,,交于点,,求的长.
18、(10分)已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.
20、(4分)菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长是_______cm.
21、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
22、(4分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.
23、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.
(1)求证:四边形BEDF是菱形;
(2)若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.
25、(10分)把下列各式分解因式:
(1)x(x-y)2-2(y-x)2 (2)(x2+4)2-16x2
26、(12分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.
(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;
(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;
(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据勾股定理得到AC==25, 连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.
【详解】
解:连接BD,交AC于点O,
在△ABC中,∠ABC=90°,AB=20,BC=15,
∴AC==25,
连接BD交AC于O,
∵四边形BCDE为菱形,
∴BD⊥CE,BO=DO,EO=CO,
∴BO===12,
∴OC==9,
∴CE=2OE=18,
∴AE=7,
故选:A.
本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.
2、D
【解析】
根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.
【详解】
垂直平分,
为中边上的中位线,
∴,
在中,
,
.
故选D.
本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.
3、A
【解析】分析:根据勾股定理知直角三角形的三边满足a2+b2=c2,当直角边扩大2倍依然满足勾股定理:(2a)2+(2b)2=(2c)2,由此确定斜边扩大的倍数.
详解:直角三角形的三边满足勾股定理:a2+b2=c2,如果两直角边扩大为原来的2倍,则(2a)2+(2b)2=(2c)2,所以斜边扩大为原来的2倍.
故选A.
点睛:此题属于勾股定理的应用,勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方,当题目中出现直角三角形,常使用勾股定理进行求解,这个定理在几何的计算问题中是经常用到的,尤其是线段的长度以及边的关系,请同学们熟记并且能熟练地运用它.
4、D
【解析】
利用概率的意义分别回答即可得到答案.
概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.
【详解】
解:A、必然发生的事件发生的概率为1,正确;
B、不可能发生的事件发生的概率为0,正确;
C、随机事件发生的概率大于0且小于1,正确;
D、概率很小的事件也有可能发生,故错误,
故选D.
本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.
5、D
【解析】
剩余的钱=原有的钱-用去的钱,可列出函数关系式.
【详解】
剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50−8x.
故选D
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
6、A
【解析】
根据众数、中位数的定义和方差公式分别进行解答即可.
【详解】
这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;
把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;
这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.
故选A.
本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2].
7、D
【解析】
考虑两种情况:9 和 40都是直角边或40是斜边.根据勾股定理进行求解.
【详解】
①当9 和 40都是直角边时,则第三边是 ;
②当40是斜边时,则第三边是= ;
则第三边长为41或,
故选D.
此题考查勾股定理,解题关键在于分情况讨论.
8、B
【解析】
直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.
【详解】
.
故选B.
此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、—1
【解析】
将x=−2代入计算即可.
【详解】
当x=−2时,f(−2)=3×(−2)+2=−1.
故答案为:−1.
本题主要考查的是求函数值,将x的值代入解析式解题的关键.
10、①③④.
【解析】
如图,作AM⊥y轴于M,AN⊥OE于N.首先证明四边形AMON是正方形,再证明△AMF≌△ANB(ASA),△AMC≌△ANE(ASA),△AFC≌△ABE(SSS)即可解决问题.
【详解】
解:如图,作AM⊥y轴于M,AN⊥OE于N.
∵A(4,4),
∴AM=AN=4,
∵∠AMO=∠ONA=90°,
∴四边形ANON是矩形,
∵AM=AN,
∴四边形AMON是正方形,
∴OM=ON=4,
∴∠MAN=90°,
∵CD⊥EF,
∴∠FAC=∠MAN=90°,
∴△AMF≌△ANB(ASA),∴FM=BN,
∴OF+OB=OM+FM+ON-BN=2OM=8,故③正确,
同法可证△AMC≌△ANE(ASA),
∴CM=NE,AC=AE,故①正确;
∵FM=BN,
∴CF=BE,
∵AC=AE,AF=AB,
∴△AFC≌△ABE(SSS),
∴S△ABE-S△BOC=S△AFC-S△BOC=S四边形ABOF=S正方形AMON=16,故④正确,
当BE为定值时,点P是动点,故PC≠BE,故②错误,
故答案为①③④.
本题考查三角形的面积、坐标与图形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
11、1
【解析】
由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.
【详解】
解:中,AD//BC,
平分
故答案为1.
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
12、①②③④
【解析】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC=∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.
【详解】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.
∵AB∥DC,
∴∠BAC=∠DCA.
∴∠BCA=∠BAC.
∴AB=BC.
∴AB=BC=CD=AD.
∴四边形ABCD为菱形.
∴AD∥BC,AB=CD,AC⊥BD,AO=CO.
故答案为①②③④
本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.
13、0
相关试卷
这是一份2024-2025学年江苏省盐城市东台市三仓镇区中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省盐城市东台市三仓镇区中学九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列叙述,错误的是,若反比例函数的图象过点A等内容,欢迎下载使用。
这是一份江苏省盐城市东台市三仓镇区中学2023-2024学年数学九上期末统考试题含答案,共10页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。