2024-2025学年湖北省宜昌伍家岗区四校联考九上数学开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)直角三角形两条直角边的长分别为3和4,则斜边长为( )
A.4B.5C.6D.10
2、(4分)下列根式中与是同类二次根式的是( )
A.B.C.D.
3、(4分)二次根式在实数范围内有意义, 则x的取值范围是( )
A.x≥-3B.x≠3C.x≥0D.x≠-3
4、(4分)菱形的面积为2,其对角线分别为x、y,则y与x的图象大致().
A.B.
C.D.
5、(4分)估计的值应在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
6、(4分)下列根式中,最简二次根式是( )
A.B.C.D.
7、(4分)如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为( )
A.B.
C.D.
8、(4分)如图,梯形 ABCD 中,AD∥BC,AD=CD,BC=AC,∠BAD=110°,则∠D=()
A.140°B.120°C.110°D.100°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.
10、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.
11、(4分)在一次测验中,初三(1)班的英语考试的平均分记为a分,所有高于平均分的学生的成绩减去平均分的分数之和记为m,所有低于平均分的学生的成绩与平均分相差的分数的绝对值的和记为n,则m与n的大小关系是 ______ .
12、(4分)如图,在数轴上点A表示的实数是___.
13、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:÷(1﹣),请你给x赋予一个恰当的值,并求出代数式的值.
15、(8分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.
(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)
(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?
16、(8分)在矩形中,,,将沿着对角线对折得到.
(1)如图,交于点,于点,求的长.
(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.
17、(10分)某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
(1)根据图示填写下表:
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
18、(10分)如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求证:BD⊥CB;
(2)求四边形 ABCD 的面积;
(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.
20、(4分)如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.
21、(4分)已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=_____.
22、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。
23、(4分)甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组
25、(10分)(1)计算:.
(2)已知、、是的三边长,且满足,,,试判断该三角形的形状.
26、(12分)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
(1)如图1所示,求证: 且
(2)将△COD绕点O旋转到图2、图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用勾股定理即可求出斜边长.
【详解】
由勾股定理得:斜边长为:=1.
故选B.
本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.
2、C
【解析】
各项化简后,利用同类二次根式定义判断即可.
【详解】
解:、,不符合题意;
、,不符合题意;
、,与的被开方数相同;与是同类二次根式是符合题意;
、,不符合题意,
故选:.
此题考查了同类二次根式,熟练掌握同类二次根式定义是解本题的关键.
3、A
【解析】
根据二次根式中被开方数大于等于0即可求解.
【详解】
解:由题意可知,,
解得,
故选:A.
此题主要考查了二次根式有意义的条件,即被开方数要大于等于0,正确把握二次根式有意义的条件是解题关键.
4、C
【解析】
先根据菱形的面积公式,得出x、y的函数关系,再根据x的取值范围选出答案.
【详解】
∵菱形的面积S=
∴,即y=
其中,x>0
故选:C
本题考查菱形面积公式的应用,注意在求解出x、y的关系后,还需要判断x的取值范围.
5、B
【解析】
找到被开方数5前后的完全平方数4和9进行比较,可得答案
【详解】
解:∵,且
∴
∴
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.
6、D
【解析】
试题解析:最简二次根式应满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.A选项中被开方数含有分母;B选项被开方数含有能开得尽方的因数4;C选项被开方数含有能开得尽方的因式.只有D选项符合最简二次根式的两个条件,故选D.
7、C
【解析】
根据点的位置得出不等式组,求出不等式组的解集,即可得出选项.
【详解】
解:∵点P(x-4,x+3)在平面直角坐标系的第二象限内,
∴,
解得:-3<x<4,
在数轴上表示为:,
故选C.
本题考查了解一元一次不等式组、在数轴上表示不等式组的解集和点的坐标等知识点,能求出不等式组的解集是解此题的关键.
8、D
【解析】
根据平行线的性质求出∠B,根据等腰三角形性质求出∠CAB,推出∠DAC,求出∠DCA,根据三角形的内角和定理求出即可.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠BAD=110°
∴∠B=70°,
∵AC=BC,
∴∠B=∠BAC=70°,
∴∠DAC=110°-70°=40°,
∵AD=DC,
∴∠DAC=∠DCA=40°,
∴∠D=180°-∠DAC-∠DCA=100°,
故选:D.
本题考查了梯形,平行线的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.
【详解】
解:由题意知道:题目中的数据可以整理为:,,…,
∴第13个答案为:.
故答案为:1.
此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
10、
【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:根据勾股定理,AB=,
BC=,
AC=,
∵AC2+BC2=AB2=26,
∴△ABC是直角三角形,
∵点D为AB的中点,
∴CD=AB=×=.
故答案为.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
11、m=n
【解析】
根据“平均分的意义和平均分、总分之间的关系”进行分析解答即可.
【详解】
设初三(1)班这次英语考试中成绩高于平方分的有x人,低于平均分的有y人,等于平均分的有z人,则由题意可得:
a(x+y+z)=(ax+m)+(ay-n)+az,
∴ax+ay+az=az+m+ay-n+az,
∴0=m-n,
∴m=n.
故答案为:m=n.
“能够根据:全班的总分=成绩高于平均分的同学的总得分+成绩低于平均分的同学的总得分+成绩等于平均分的同学的总得分得到等式a(x+y+z)=(ax+m)+(ay-n)+az”是解答本题的关键.
12、
【解析】
首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.
【详解】
OB==,
∵OB=OA,
∴点A表示的实数是,故答案为:.
本题考查实数与数轴、勾股定理,解题的关键是掌握勾股定理的应用.
13、1
【解析】
过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到 OB•AC=1,易得OC•AC=1,设A点坐标为(x,y),即可得到k=xy=OC•AC=1.
【详解】
过点A作OB的垂线,垂足为点C,如图,
∵AO=AB,
∴OC=BC=OB,
∵△ABO的面积为1,
∴OB⋅AC=1,
∴OC⋅AC=1.
设A点坐标为(x,y),而点A在反比例函数y= (k>0)的图象上,
∴k=xy=OC⋅AC=1.
故答案为:1.
此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
三、解答题(本大题共5个小题,共48分)
14、.
【解析】
先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的x的值代入计算可得.
【详解】
原式=
=
=,
当x=0时,原式=.
本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.
15、(1)每天销售量是千克;(2)水果店需将每千克的售价降低1元.
【解析】
(1)销售量原来销售量下降销售量,据此列式即可;
(2)根据销售量每千克利润总利润列出方程求解即可.
【详解】
解:(1)每天的销售量是(千克).
故每天销售量是千克;
(2)设这种水果每斤售价降低元,根据题意得:,
解得:,,
当时,销售量是;
当时,销售量是(斤.
每天至少售出260斤,
.
答:水果店需将每千克的售价降低1元.
考查了一元二次方程的应用,本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量.第二问,根据售价和销售量的关系,以利润作为等量关系列方程求解.
16、(1);(2)的面积是.
【解析】
(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;
(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得
MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC
∴AC==5,
∵将Rt△ABC沿着对角线AC对折得到△AMC.
∴∠BCA=∠ACE,
∵AD∥BC
∴∠DAC=∠BCA
∴∠EAC=∠ECA
∴AE=EC
∵EC2=ED2+CD2,
∴AE2=(4−AE)2+9,
∴AE= ,
∵S△AEC=×AE×DC=×AC×EF,
∴×3=5×EF,
∴EF=;
(2)如图所示:
∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,
∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,
∵AB∥CD
∴∠BAC=∠ACD
∴∠BAC=∠ACD=∠CAM=∠ACN
∴∠BAM=∠DCN,且BA=AM=CD=CN
∴△BAM≌△DCN(SAS)
∴BM=DN
∵∠BAM=∠DCN
∴∠BAM−90°=∠DCN−90°
∴∠MAD=∠BCN,且AD=BC,AM=CN
∴△AMD≌△CNB(SAS)
∴MD=BN,且BM=DN
∴四边形MDNB是平行四边形
连接BD,
由(1)可知:∠EAC=∠ECA,
∵∠AMC=∠ADC=90°
∴点A,点C,点D,点M四点共圆,
∴∠ADM=∠ACM,
∴∠ADM=∠CAD
∴AC∥MD,且AC⊥DN
∴MD⊥DN,
∴四边形BNDM是矩形
∴∠BND=90°
∵S△ADC=×AD×CD=×AC×DF
∴DF=
∴DN=
∵四边形ABCD是矩形
∴AC=BD=5,
∴BN=
∴四边形BMDN的面积=BN×DN=×=.
本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM是矩形是本题的关键.
17、(1)九(1)的平均数为85,众数为85,九(2)班的中位数是80;(2)九(1)班成绩好些,分析见解析;(3)=70,=100
【解析】
(1)先根据条形统计图得出每个班5名选手的复赛成绩,然后平均数按照公式 ,中位数和众数按照概念即可得出答案;
(2)对比平均数和中位数,平均数和中位数大的成绩较好;
(3)按照方差的计算公式计算即可.
【详解】
解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,
九(2)班5名选手的复赛成绩为:70、100、100、75、80,
∴九(1)的平均数为(75+80+85+85+100)÷5=85,
九(1)的众数为85,
把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
∴九(2)班的中位数是80;
(2)九(1)班成绩好些.因为两个班平均分相同,但九(1)班的中位数高,所以九(1)班成绩好些.
(3)==70
==100
本题主要考查数据的统计与分析,掌握平均数,中位数,众数和方差是解题的关键.
18、(1)证明见解析;(1)36m1;(3)P 的坐标为(0,-1)或(0,10).
【解析】
(1)先根据勾股定理求出 BD 的长度,然后根据勾股定理的逆定理,即可证明
BD⊥BC;
(1)根据四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;
(3)先根据 S△PBD=S四边形 ABCD,求出 PD,再根据 D 点的坐标即可求解.
【详解】
(1)证明:连接 BD.
∵AD=4m,AB=3m,∠BAD=90°,
∴BD=5m.
又∵BC=11m,CD=13m,
∴BD1+BC1=CD1.
∴BD⊥CB;
(1)四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积
= ×3×4+ ×11×5
=6+30
=36(m1).
故这块土地的面积是 36m1;
(3)∵S△PBD=S 四边形ABCD
∴•PD•AB= ×36,
∴•PD×3=9,
∴PD=6,
∵D(0,4),点 P 在 y 轴上,
∴P 的坐标为(0,-1)或(0,10).
本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.
【详解】
四边形是菱形
∴OC=OA,AB∥CD,
∴
∴≌(ASA)
∴S△CFO= S△AOE
∴S△CFO+ S△EBO= S△AOB
∴S△AOB=SABCD=×
故答案为:.
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.
20、1.
【解析】
由S△BOE+S△COE=S△BOC即可解决问题.
【详解】
连接OE.
∵四边形ABCD是正方形,AC=10,
∴AC⊥BD,BO=OC=1,
∵EG⊥OB,EF⊥OC,
∴S△BOE+S△COE=S△BOC,
∴•BO•EG+•OC•EF=•OB•OC,
∴×1×EG+×1×EF=×1×1,
∴EG+EF=1.
故答案为1.
本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型
21、﹣8
【解析】
首先根据题意设出关系式:y=k(x-1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,然后把x=-3代入即可求得答案.
【详解】
∵y与x-1成正比例,
∴关系式设为:y=k(x-1),
∵x=3时,y=4,
∴4=k(3-1),
解得:k=2,
∴y与x的函数关系式为:y=2(x-1)=2x-2,
当x=-3时,y=-6-2=-8,
故答案为:-8.
本题考查了待定系数法求一次函数解析式,关键是设出关系式,代入x,y的值求k.
22、10%
【解析】
设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.
【详解】
解:设这种服装平均每件降价的百分率是x,由题意得
80(1-x)2=1.8
∴(1-x)2=0.81
∴1-x=0.9或1-x=-0.9
∴x=10%或x=1.9(舍)
故答案为10%.
本题是一元二次方程的基本应用题,明白降两次价变为原来的(1-x)2倍是解题的关键.
23、<
【解析】
分别求出甲、乙两个班级的成绩平均数,然后根据方差公式求方差作比较即可.
【详解】
解:甲班20名男生引体向上个数为5,6,7,8的人数都是5,
乙班20名男生引体向上个数为5和8的人数都是6个,个数为6和7的人数都是4个,
∴甲班20名男生引体向上的平均数=,
乙班20名男生引体向上的平均数=,
∴,
,
∴,
故答案为:<.
本题考查了方差的计算,熟练掌握方差公式是解题关键.
二、解答题(本大题共3个小题,共30分)
24、﹣1≤x<2
【解析】
首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.
【详解】
解不等式①,得:x<2,
解不等式②,得:x≥﹣1,
所以不等式组的解集为﹣1≤x<2,
将不等式组的解集表示在数轴上如下:
此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
25、(1)-4;(2)为且.
【解析】
(1)根据二次根式的性质,整数指数幂的性质化简计算即可.
(2)利用勾股定理的逆定理解决问题即可.
【详解】
(1)解:原式=
(2)解:,;
∴
为且
本题考查勾股定理的逆定理,零指数幂,二次根式的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、(1)详见解析;(2)详见解析.
【解析】
(1)首先证明△AOD≌△BOC(SAS),利用全等三角形的性质得到BC=AD,再利用直角三角形斜边中线的性质即可得到OH=BC=AD,然后通过全等三角形对应角相等以及直角三角形两锐角互余证明OH⊥AD;
(2)如图2中,延长OH到E,使得HE=OH,连接BE,通过证明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,问题得证;如图3中,延长OH到E,使得HE=OH,连接BE,延长EO交AD于G,同理可证OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.
【详解】
(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,
∴OC=OD,OA=OB,
在△AOD与△BOC中,
∵OA=OB,∠AOD=∠BOC,OD=OC,
∴△AOD≌△BOC(SAS),
∴BC=AD
∵H是BC中点,
∴OH=BC=AD.
∵△AOD≌△BOC
∴∠ADO=∠BCO,∠OAD=∠OBC,
∵点H为线段BC的中点,
∴∠OBH=∠HOB=∠OAD,
又∵∠OAD+∠ADO=90°,
∴∠ADO+∠BOH=90°,
∴OH⊥AD;
(2)解:结论:OH⊥AD,OH=AD
证明:如图2中,延长OH到E,使得HE=OH,连接BE,
易证△BEO≌△ODA,
∴OE=AD,∴OH=OE=AD.
由△BEO≌△ODA,知∠EOB=∠DAO,
∴∠DAO+∠AOH=∠EOB+∠AOH=90°,
∴OH⊥AD.
如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.
易证△BEO≌△ODA,
∴OE=AD,∴OH=OE=AD.
由△BEO≌△ODA,知∠EOB=∠DAO,
∴∠DAO+∠AOG=∠EOB+∠AOG=90°,
∴∠AGO=90°,
∴OH⊥AD.
本题考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
九(2)
85
100
2024-2025学年湖北省天门市江汉学校九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年湖北省天门市江汉学校九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省荆州市洪湖市数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年湖北省荆州市洪湖市数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省鄂州鄂城区七校联考九上数学开学学业水平测试试题【含答案】: 这是一份2024-2025学年湖北省鄂州鄂城区七校联考九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。