![2024-2025学年哈尔滨市第六十九中学九年级数学第一学期开学预测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16175790/0-1726816446672/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年哈尔滨市第六十九中学九年级数学第一学期开学预测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16175790/0-1726816446727/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年哈尔滨市第六十九中学九年级数学第一学期开学预测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16175790/0-1726816446747/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年哈尔滨市第六十九中学九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)分式 可变形为( )
A. B. C. D.
2、(4分)如图,已知直线y=x与双曲线y= (k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )
A.8B.32C.10D.15
3、(4分)已知四边形,对角线与交于点,从下列条件中:①;②;③;④.任取其中两个,以下组合能够判定四边形是平行四边形的是( )
A.①②B.②③C.②④D.①④
4、(4分)去分母解关于的方程产生增根,则的取值为( )
A.-1B.1C.3D.以上答案都不对
5、(4分)如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是( )
A.△AOB的面积等于△AOD的面积B.当AC⊥BD时,它是菱形
C.当OA=OB时,它是矩形D.△AOB的周长等于△AOD的周长
6、(4分)若直角三角形一条直角边长为6,斜边长为10,则斜边上的高是( )
A.B.C.5D.10
7、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是( )
A.SABCD=4S△AOB
B.AC=BD
C.AC⊥BD
D.ABCD是轴对称图形
8、(4分)在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(-2,1),则点B的对应点B1的坐标为( )
A.(2,-1)B.(2,1)C.(﹣2,-1)D.(1,2)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程2(x﹣5)2=(x﹣5)的根是_____.
10、(4分)若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.
11、(4分)如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.
12、(4分)若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.
13、(4分)已知:如图,四边形中,,要使四边形为平行四边形,需添加一个条件是:__________.(只需填一个你认为正确的条件即可)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知火车站的坐标为(2,2),文化宫的坐标为(-1,3).
(1)请你根据题目条件,画出平面直角坐标系;
(2)写出体育场,市场,超市的坐标;
(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.
15、(8分)计算:
(1);
(2);
(3)先化简再求值,其中,.
16、(8分)先化简,再求值:当m=10时,求的值.
17、(10分)如图所示的方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.在图中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形.
18、(10分)如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)当AM的值为 时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.
20、(4分)计算:(2+)(2-)=_______.
21、(4分) “a的3倍与b的差不超过5”用不等式表示为__________.
22、(4分)因式分解:_________
23、(4分)一元二次方程有实数根,则的取值范围为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过点A作AE//BC与过点D作CD的垂线交于点E.
(1)如图1,若CE交AD于点F,BC=6,∠B=30°,求AE的长
(2)如图2,求证AE+CE=BC
25、(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:
(1)本次调查的学生总数为 人;
(2)在扇形统计图中,所对应扇形的圆心角 度,并将条形统计图补充完整;
(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.
26、(12分)如图,在□ABCD 中,E、F为对角线AC上的两点,且AE=CF.
(1)求证:四边形DEBF是平行四边形;
(2)如果DE=3,EF=4,DF=5,求EB、DF两平行线之间的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分式的性质,可化简变形.
【详解】
.
故答案为:D
考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.
2、D
【解析】
点A的横坐标为4,将x=4代入y= x,得y=2.
∴点A的坐标为(4,2).
∵点A是直线y=x与双曲线y=(k>0)的交点,
∴k=4×2=8,即y=.
将y=8代入y=中,得x=1.
∴点C的坐标为(1,8).
如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.
易得S长方形DMON=32,S△ONC=4,
S△CDA=9,S△OAM=4.
∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.
3、D
【解析】
以①④作为条件能够判定四边形ABCD是平行四边形,根据平行得出全等三角形,即可求出OB=OD,根据平行四边形的判定推出即可;
【详解】
以①④作为条件,能够判定四边形ABCD是平行四边形.
理由:∵AB//CD,
∴∠OAB=∠OCD,
在△AOB和△COD中,
∴△AOB≌△COD(ASA),
∴OB=OD,
∴四边形ABCD是平行四边形.
故选:D.
本题考查平行四边形的全等条件,熟练掌握平行四边形的性质的解题关键
4、A
【解析】
分式方程去分母转化为整式方程,由分式方程有增根确定出x的值,代入整式方程计算即可求出m的值.
【详解】
方程两边乘以x-2得,x-3=m,
∵分式方程有增根,
∴x-2=0,即x=2,
∴2-3=m,
∴m=-1.
故选A..
本题考查了分式方程的增根:先把分式方程两边乘以最简公分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入最简公分母中,若其值不为零,则此解为原分式方程的解;若其值为0,则此整式方程的解为原分式方程的增根.
5、D
【解析】
A.∵四边形ABCD是平行四边形,∴BO=OD,∴S△AOB=S△AOD(等底同高),则A正确,不符合题意;
B.当AC⊥BD时,平行四边形ABCD是菱形,正确,不符合题意;
C.当OA=OB时,则AC=BD,∴平行四边形ABCD是矩形,正确,不符合题意;
D.△AOB的周长=AO+OB+AB,△AOD的周长=AO+OD+AD=AO+OB+AD,∵AB≠AD,∴周长不相等,故错误,符合题意.
故选D.
6、B
【解析】
根据勾股定理求出直角三角形另一条直角边长,根据三角形面积公式计算即可.
【详解】
解:设斜边上的高为h,
由勾股定理得,直角三角形另一条直角边长==8,
则,
解得,h=
故选B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
7、A
【解析】
试题分析:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,DO=BO.
∴S△AOD=S△DOC=S△BOC=S△AOB.∴SABCD=4S△AOB,故此选项正确;
B、无法得到AC=BD,故此选项错误;
C、无法得到AC⊥BD,故此选项错误;
D、ABCD是中心对称图形,不是轴对称图形,故此选项错误.
故选A.
8、A
【解析】
根据题意可得,点B和点B的对应点B1关于原点对称,据此求出B1的坐标即可.
【详解】
∵△A1OB1是将△AOB绕原点O顺时针旋转180°后得到图形,
∴点B和点B1关于原点对称,
∵点B的坐标为(-2,1),
∴B1的坐标为(2,−1).
故选:A.
此题考查坐标与图形变化-旋转,解题关键在于掌握旋转的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x1=1,x2=1.1
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
2(x﹣1)2﹣(x﹣1)=0,
(x﹣1)[2(x﹣1)﹣1]=0,
x﹣1=0,2(x﹣1)﹣1=0,
x1=1,x2=1.1,
故答案为:x1=1,x2=1.1.
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
10、1
【解析】
先根据平均数的定义求出x的值,然后根据中位数的定义求解.
【详解】
由题意可知,(1+a+7+8+3)÷5=5,
a=3,
这组数据从小到大排列3,3,1,7,8,
所以,中位数是1.
故答案是:1.
考查平均数与中位数的意义.
平均数是指在一组数据中所有数据之和再除以数据的个数.
中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
11、或
【解析】
沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.
【详解】
(1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,
由折叠得:是正方形,此时:,
(2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,
由折叠得:,
在中,,
,
设,则,
在中,由勾股定理得:,解得:,
在中,由勾股定理得:,
折痕长为:或.
考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.
12、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算即可.
【详解】
解:∵数据6,x,1,3,4的平均数是4,
∴(6+x+1+3+4)÷5=4,
解得:x=5,
∴这组数据的方差是[(6-4)1+(5-4)1+(1-4)1+(3-4)1+(4-4))1]=1;
故答案为:1.
本题考查方差的定义与意义:一般地设n个数据,x1,x1,…xn的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.
13、.(答案不唯一)
【解析】
由AO=OC,根据对角线互相平分的四边形是平行四边形,即可得添加BO=OD即可.
【详解】
添加的BO=OD.
理由:∵在四边形ABCD中,BO=DO,AO=CO,
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).
此题考查了平行四边形的判定.此题难度不大,注意掌握平行四边形的判定定理是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)图形见解析(2)体育场(-2,5)市场(6,5)超市(4,-1)(3)图形见解析
【解析】
试题分析:(1)根据已知点的坐标确定原点的坐标,确定出平面直角坐标系;
(2)根据(1)的图形写出个点的坐标;
(3)分别根据坐标写出位置名称.
试题解析:(1)如图
(2)体育场(-2,5)市场(6,5)超市(4,-1)
(3)如图
15、(1);(2);(3),2.
【解析】
(1)原式利用多项式乘以多项式法则计算即可求出值;
(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;
(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
【详解】
解:(1)
;
(2)
;
(3)
当,时,
原式.
故答案为:(1);(2);(3),2.
本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.
16、.
【解析】
首先将原式的分子与分母分解因式,进而化简求出答案.
【详解】
=
=
=
= ,
当m=10时,原式==.
此题考查分式的化简求值,解题关键在于掌握运算法则
17、见解析
【解析】
本题是直角三角形定义的应用问题,如果三角形有一个内角是直角,那么这个三角形就是直角三角形.根据三角形内角和定理,三角形中是直角的内角最多只有一个.从图中可以看出线段AB没有经过任何一个小正方形的边,因此从点A、B处构造直角比较困难;所以考虑在点C处构造直角,通过点A和点B分别作水平和竖直的直线,则直线交点就是点C的位置.
【详解】
过点A作竖直的直线,过点B作水平的直线,交点处就是点C,如图①;或者过点A作水平的直线,过点B作竖直的直线,交点处就是点C,如图②.

本题考查直角三角形的定义、勾股定理和勾股定理的逆定理,解答的关键是掌握直角三角形的定义、勾股定理和勾股定理的逆定理.
18、(1)见解析(2)当AM=2时,说明四边形是矩形
【解析】
(1)根据菱形的性质可得AB∥CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠DEN=∠AEM,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)首先证明△AEM是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.
【详解】
(1)∵点E是AD边的中点,
∴AE=ED,
∵AB∥CD,
∴∠NDE=∠MAE,
在△NDE和△MAE中,
,
∴△NDE≌△MAE(ASA),
∴ND=AM,
∵ND∥AM,
∴四边形AMDN是平行四边形;
(2)当AM=2时,说明四边形是矩形.
∵E是AD的中点,
∴AE=2,
∵AE=AM,∠EAM=60°,
∴△AME是等边三角形,
∴AE=EM,
∴AE=ED=EM,
∴∠AMD=90°,
∵四边形ABCD是菱形,
故当AM=2时,四边形AMDN是矩形.
本题考查矩形的判定、菱形的性质和平行四边形的判定,解题的关键是掌握矩形的判定、菱形的性质和平行四边形的判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据等边三角形的性质可得A B'=AE=E B',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△A B'C进而可得答案.
【详解】
解:∵为等边三角形,
∴A B'=AE=E B',∠B'=∠B'EA=60°,
根据折叠的性质,∠BCA=∠B'CA,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,
∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,
∴AC==,
∵B'E=AE=EC,
∴S△AEC=S△AEB'= S△A B'C= × ×4×=,
故答案为.
此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.
20、1
【解析】
根据实数的运算法则,利用平方差公式计算即可得答案.
【详解】
(2+)(2-)
=22-()2
=4-3
=1.
故答案为:1
本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.
21、
【解析】
根据“a的3倍与b的差不超过5”,则.
【详解】
解:根据题意可得出:;
故答案为:
此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.
22、x(x-9)
【解析】
分析:直接提取公因式x,进而分解因式即可.
详解: x2﹣9x=x(x﹣9).
故答案为:x(x﹣9).
点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
23、
【解析】
根据根的判别式求解即可.
【详解】
∵一元二次方程有实数根
∴
解得
故答案为:.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)2;(2)见详解.
【解析】
(1)由点D是AB中点,∠B=30°得到△ACD是等边三角形,由30°角所对直角边等于斜边的一半,得到AC=,由BC=6,即可得到AC=,同理可计算得到;
(2)延长ED,交BC于点G,可证△ADE≌△BDG,得到AE=BG,然后证明△CDE≌△CDG,得到CE=CG,然后即可得到AE+CE=BC.
【详解】
解:(1)在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴AD=BD=CD,
∵∠B=30°,
∴∠BCD=∠B=30°,∠BAC=60°
∴△ACD是等边三角形.
∴AC=AD=
∵AE//BC,CD⊥DE,
∴∠CAE=∠ACB=90°,∠CDE=90°,
∴△ACE≌△DCE,
∴∠ACE=∠DCE=30°,
∴CE=2AE.
在Rt△ABC中,,BC=6,
∴,
∴,
同理,在Rt△ACE中,
解得:,
∴AE的长度为:2.
(2)如图,延长ED,交BC于点G,则
∵点D是AB的中点,
∴AD=BD,
∵AE∥BC,
∴∠EAD=∠GBD,
∵∠ADE=∠BDG,
∴△ADE≌△BDG(ASA),
∴AE=BG.DE=DG
∵CD⊥ED,
∴∠CDE=∠CDG=90°,
又CD=CD,
∴△CDE≌△CDG(SAS),
∴CE=CG,
∵BC=BG+CG,
∴BC=AE+EC.
本题考查了全等三角形的判定和性质,平行线的性质,30°角所对直角边等与斜边的一半,解题的关键是掌握全等三角形的判定和性质,准确地得到边之间的关系.
25、(1)50;(2)144°,图见解析;(3) .
【解析】
(1)根据“优”的人数和所占的百分比即可求出总人数;
(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;
(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.
【详解】
(1)本次调查的学生总数为:15÷30%=50(人);
故答案为:50;
(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;
“中”等级的人数是:50-15-20-5=10(人),补图如下:
故答案为:10;
(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:
共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,
则所选的两位同学测试成绩恰好都为“良”的概率是 .
此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
26、(1)详见解析;(2)2.1.
【解析】
(1)根据平行四边形的性质可得AD=BC,AD∥BC,继而可得∠DAE=∠BCF,然后即可利用SAS证明△ADF≌△CBE,进一步即可证明DF=EB,DF∥EB,即可证得结论;
(2)先根据勾股定理的逆定理得出DE⊥EF,然后根据三角形的面积即可求出结果.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∴∠DAE=∠BCF,
∵AE=CF,∴AF=CE,
∴△ADF≌△CBE(SAS),
∴DF=EB,∠DFA=∠BEC,
∴DF∥EB,
∴四边形DEBF是平行四边形;
(2)解:∵,,
∴,∴DE⊥EF.
过点E作EG⊥DF于G,如图,则,即3×1=EG×5,∴EG=2.1.
∴EB、DF两平行线之间的距离为2.1.
本题考查了平行四边形的性质和判定、全等三角形的判定和性质、两平行线之间的距离的定义、勾股定理的逆定理和三角形的面积等知识,属于常见题型,熟练掌握平行四边形的判定和性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年贵州省毕节市九年级数学第一学期开学预测试题【含答案】: 这是一份2024-2025学年贵州省毕节市九年级数学第一学期开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省中学山市九年级数学第一学期开学预测试题【含答案】: 这是一份2024-2025学年广东省中学山市九年级数学第一学期开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京市第六十六中学2024-2025学年上学期九年级开学考试数学试题: 这是一份北京市第六十六中学2024-2025学年上学期九年级开学考试数学试题,共4页。