黑龙江省哈尔滨市香坊区第六十九中学2024-2025学年数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中,在正比例函数的图象上的点是( )
A.B.C.D.
2、(4分)关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为( )
A.1B.2C.3D.7
3、(4分)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度的一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是( )
A.菱形B.矩形C.正方形D.梯形
4、(4分)如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④;其中正确的结论个数是( )
A.1个B.2个C.3个D.4个
5、(4分)对于一组数据:85,95,85,80,80,85,下列说法不正确的是( )
A.平均数为85B.众数为85C.中位数为82.5D.方差为25
6、(4分)为了了解某市八年级女生的体能情况,从某校八年级的甲、乙两班各抽取27名女生进行一分钟跳绳次数的测试,测试数据统计如下:
如果每分钟跳绳次数大于或等于105为优秀,则甲、乙两班优秀率的大小关系是( )
A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较
7、(4分)下列计算错误的是( )
A.+=2B.C.D.
8、(4分)根据以下程序,当输入x=﹣2时,输出结果为( )
A.﹣5B.﹣2C.0D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:x2y﹣y3=_____.
10、(4分)如图,平行四边形ABCD中,AE⊥CD于E,∠B=50°,则∠DAE= ______.
11、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
12、(4分)若方程x2﹣3x﹣1=0的两根为x1、x2,则 的值为_____.
13、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是 米分钟,乙在地提速时距地面的高度为 米;
(2)直接写出甲距地面高度(米和(分之间的函数关系式;
(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
15、(8分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.
16、(8分)如图,小明用自制的直角三角形纸板DEF测量树的高度1B.他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.
17、(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:
根据以上提供的信息,解答下列问题:
(1)a=_____,b=_____,c=______;
(2)补全上面的条形统计图;
(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?
18、(10分)去年3月,某炒房团以不多于2224万元不少于2152万元的资金分别从A城、B城买入小户型二手房(80平方米/套)共4000平方米.其中A城、B城的购入价格分别为4000元/平方米、7000元/平方米.自住建部今年5月约谈成都市政府负责同志后,成都市进一步加大了调控政策.某炒房团为抛售A城的二手房,决定从6月起每平方米降价1000元.如果卖出相同平方米的房子,那么5月的销售额为640万元,6月的销售额为560万元.
(1)A城今年6月每平方米的售价为多少元?
(2)请问去年3月有几种购入方案?
(3)若去年三月所购房产全部没有卖出,炒房团计划在7月执行销售方案:B城售价为1.05万元/平方米,并且每售出一套返还该购房者a元;A城按今年6月的价格进行销售。要使(2)中的所有方案利润相同,求出a应取何值?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知矩形的长a=,宽b=,则这个矩形的面积是_____.
20、(4分)已知一组数据,,的方差为4,那么数据,,的方差是___________.
21、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.
22、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
23、(4分)如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?
25、(10分)已知,矩形ABCD中,AB=6cm,BC=18cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中.
①已知点P的速度为每秒10cm,点Q的速度为每秒6cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为x、y(单位:cm,xy≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求x与y满足的函数关系式.
26、(12分)如图(甲),在正方形中,是上一点,是延长线上一点,且.
(1)求证:;
(2)在如图(甲)中,若在上,且,则成立吗?
证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:
如图(乙)四边形中,∥(>),,,点是上一点,且,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据正比例函数的性质,直接将坐标代入,即可判定是否符合题意.
【详解】
A选项坐标代入,得,错误;
B选项坐标代入,得,错误;
C选项坐标代入,得,正确;
D选项坐标代入,得,错误;
故答案为C.
此题主要考查正比例函数的性质,熟练掌握,即可解题.
2、C
【解析】
根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.
【详解】
解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0
解得b=1.
故选C.
点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
3、A
【解析】
根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.
【详解】
解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,
∴AC=AD=BD=BC,
∴四边形ADBC一定是菱形,
故选A.
此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.
4、B
【解析】
根据菱形的性质,利用SAS证明即可判断①;根据△ABF≌△CAE得到∠BAF=∠ACE,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO,判断△ADO≌△ACH不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.
【详解】
解:∵在菱形ABCD中,AB=AC=1,
∴△ABC为等边三角形,
∴∠B=∠CAE=60°,
又∵AE=BF,
∴△ABF≌△CAE(SAS),故①正确;
∴∠BAF=∠ACE,
∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;
∵∠B=∠CAE=60°,
则在△ADO和△ACH中,
∠OAD=60°=∠CAB,
∴∠CAH≠60°,即∠CAH≠∠DAO,
∴△ADO≌△ACH不成立,故③错误;
∵AB=AC=1,过点A作AG⊥BC,垂足为G,
∴∠BAG=30°,BG=,
∴AG==,
∴菱形ABCD的面积为:==,故④错误;
故正确的结论有2个,
故选B.
本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.
5、C
【解析】
对数据的平均数,众数,中位数及方差依次判断即可
【详解】
平均数=(85+95+85+80+80+85)÷6=85,故A正确;
有3个85,出现最多,故众数为85,故B正确;
从小到大排列,中间是85和85,故中位数为85,故C错误;
方差=[(85-85)2+(95-85)2+(85-85)2+(80-85)2+(80-85)2+(85-85)2]÷6=25,故D正确
故选C
熟练掌握统计学中的平均数,众数,中位数与极差的定义是解决本题的关键
6、A
【解析】
已知每分钟跳绳次数在105次以上的为优秀,则要比较优秀率,关键是比较105次以上人数的多少;从表格中可看出甲班的中位数为104,且104<105,所以甲班优秀率肯定小于50%;乙班的中位数为106,106>105,至此可求得答案.
【详解】
从表格中可看出甲班的中位数为104,104<105,乙班的中位数为106,106>105,
即甲班大于105次的人数少于乙班,
所以甲、乙两班的优秀率的关系是甲优<乙优.
故选A.
本题考查了统计量的选择,正确理解中位数和平均数的定义是解答本题的关键. 平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.平均数代表一组数据的平均水平,中位数代表一组数据的中等水平
7、B
【解析】
根据根式的运算性质即可解题.
【详解】
解:A,C,D计算都是正确的,
其中B项,只有同类根式才可以作加减法,所以B错误,
故选B.
本题考查了根式的运算,属于简单题,熟悉根式的运算性质是解题关键.
8、B
【解析】
根据所给的程序,用所给数的平方减去3,再把所得的结果和1比较大小,判断出需不需要继续计算即可.
【详解】
解:当x=﹣1时,
(﹣1)1﹣3=1;
当x=1时,
11﹣3=﹣1;
∵﹣1<1,
∴当输入x=﹣1时,输出结果为﹣1.
故选:B.
本题考查了程序式的基本算法及代数式的的计算,读懂题中的算法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y(x+y)(x﹣y).
【解析】
试题分析:先提取公因式y,再利用平方差公式进行二次分解.
解:x2y﹣y3
=y(x2﹣y2)
=y(x+y)(x﹣y).
故答案为y(x+y)(x﹣y).
10、40°.
【解析】
根据平行四边形的对角相等求∠D,由AE⊥CD,利用直角三角形两锐角互余求∠DAE.
【详解】
解:∵四边形ABCD为平行四边形,
∴∠D=∠B=50°,
又∵AE⊥CD,
∴∠DAE=90°-∠D=40°.
故答案为:40°.
本题考查平行四边形的性质,注意掌握平行四边形的两组对角分别相等,直角三角形的两锐角互余.
11、2.
【解析】
利用相似三角形的性质即可解决问题.
【详解】
∵△ABC∽△ADB,
∴,
∴AB2=AD•AC=2×4=8,
∵AB>0,
∴AB=2,
故答案为:2.
此题考查相似三角形的性质定理,相似三角形的对应边成比例.
12、-3
【解析】
解:因为的两根为x1,x2,
所以
=
故答案为:-3
13、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)10;30;(2);(3)135米.
【解析】
(1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;
(2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;
(3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.
【详解】
解:(1)甲的速度为:米分,
根据图中信息知道乙一分的时间,走了15米,
那么2分时,将走30米;
故答案为:10;30;
(2);
(3)乙提速后速度为:(米秒),
由,得,
设乙提速后与的函数关系是,
把,代入得,
解得,
乙提速后与的函数关系是,
由,
解得,
(米,
答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.
本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.
15、见解析
【解析】
整体分析:
用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.
证明:∵四边形ABCD是平行四边形,
∴AB//CD.
∵AE=CF,
∴FD=EB,
∴四边形DEBF是平行四边形,
∴DE//FB,DE=FB.
∵M、N分别是DE、BF的中点,
∴EM=FN.
∵DE//FB,
∴四边形MENF是平行四边形.
16、9米
【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
【详解】
解:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB
∴,
∵DE=40cm=0.4m,EF=30cm=0.3m,AC=1.5m,CD=10m,
∴,
∴BC=7.5米,
∴AB=AC+BC=1.5+7.5=9米.
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
17、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.
【解析】
(1)根据统计图和表格中的数据可以得到a、b、c的值;
(2)根据(1)中a的值,可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.
【详解】
解:(1)本次调查的学生有:18÷0.36=50(人),
a=50×0.2=10,
b=14÷50=0.28,
c=50,
故答案为:10、0.28、50;
(2)由(1)知,a=10,
补全的条形统计图如图所示;
(3)∵1200×(0.28+0.16)=528(名),
∴该校八年级学生课外阅读7本及以上的有528名.
本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
18、(1)A城今年6月每平方米的售价为元;(2)方案有四种,如表所示见解析;(3)应取40000元.
【解析】
(1)设A城今年6月每平方米的售价为x元,根据卖出相同平米房子的等量条件,列出分式方程,解分式方程即可;
(2)设去年3月从A城购进套,则根据“不多于2224万元不少于2152万元的资金”列出不等式,解不等式,根据不等式的限制即可确定可能方案;
(3)设A城有套,总利润为元,列出A城售出套数和总利润的关系式,最后根据与(2)利润相同,即可解答.
【详解】
(1)设A城今年6月每平方米的售价为x元,则
解之得:
经检验:是原方程的根.
答:A城今年6月每平方米的售价为元.
(2)设去年3月从A城购进套,则
解之得:
∴方案有四种,如下表所示:
(3)设A城有套,总利润为元,则
∴
∵所有方案利润相同
∴0000元
答:应取40000元.
本题考查了分式方程和一元一次不等式的应用,解题的关键是仔细审题,从而找到数量关系列出分式方程或不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.
【详解】
矩形的面积=ab
=×
=×1××3
=1,
故答案为:1.
本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.
20、4
【解析】
设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.
【详解】
设数据,,的平均数为m,
则有a+b+c=3m,=4,
∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,
方差为:
==4,
故答案为:4.
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
21、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
22、(1,1)或(,)或(1,1)
【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
【详解】
∵点A的坐标为(1,0),
∴OA=1.
分三种情况考虑,如图所示.
①当OP1=AP1时,∵∠AOP1=45°,
∴△AOP1为等腰直角三角形.
又∵OA=1,
∴点P1的坐标为(1,1);
②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.
∵OP1=OA=1,
∴OB=BP1=,
∴点P1的坐标为(,);
③当AO=AP3时,△OAP3为等腰直角三角形.
∵OA=1,
∴AP3=OA=1,
∴点P3的坐标为(1,1).
综上所述:点P的坐标为(1,1)或(,)或(1,1).
故答案为:(1,1)或(,)或(1,1).
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.
23、1
【解析】
已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.
【详解】
解:,E为AC的中点,
,
分别为AB,BC的中点,
.
故答案为:1.
此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
二、解答题(本大题共3个小题,共30分)
24、改进设备后平均每天耗煤1.5吨.
【解析】
设改进后评价每天x吨,根据题意列出分式方程即可求解.
【详解】
解:设改进后评价每天x吨,
,
解得x=1.5.
经检验,x=1.5是此分式方程的解.故
故改进设备后平均每天耗煤1.5吨.
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行求解.
25、(1)证明见解析,;(2)①,②.
【解析】
(1)首先证明,由此得出,从而证明四边形为菱形,然后在Rt△ABF中利用勾股定理进一步求解即可;
(2)①根据题意依次发现当点在上时,点在上以及点在上时,点在或上,也不能构成平行四边形,当点在上、点在上时,才能构成平行四边形,据此进一步求解即可;②以、、、四点为顶点的四边形是平行四边形时,根据题意分当点在上、点在上时或当点在上、点在上时以及当点在上、点在上时三种情况进一步分析求解即可.
【详解】
(1)证明:∵四边形是矩形,
∴,
∴,.
∵垂直平分,垂足为,
∴,
在和△COF中,
∵
∴,
∴,
∴四边形为平行四边形,
又∵,
∴四边形为菱形,
设菱形的边长,则
在Rt△ABF中,,
解得:,
∴;
(2)①显然当点在上时,点在上,此时、、、四点不可能构成平行四边形;
同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.
∴以、、、四点为顶点的四边形是平行四边形时,,
∵点的速度为每秒,点的速度为每秒,运动时间为秒,
∴,,
∴,
解得:,
∴以、、、四点为顶点的四边形是平行四边形时,;
②由题意得,以、、、四点为顶点的四边形是平行四边形时,点、在互相平行的对应边上.
分三种情况:
其一:如图1,当点在上、点在上时,,,即;
其二:如图2,当点在上、点在上时,,,即;
其三:如图3,当点在上、点在上时,,,即,
综上所述,与满足的函数关系式是.
本题主要考查了菱形的判定、全等三角形性质及判定、平行四边形的动点问题与一次函数的综合运用,熟练掌握相关方法是解题关键.
26、(1)见解析;(1)成立,理由见解析;(3)5
【解析】
分析:(1)因为ABCD为正方形,所以CB=CD,∠B=∠CDA=90°,又因为DF=BE,则△BCE≌△DCF,即可求证CE=CF;
(1)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,则△ECG≌△FCG,故GE=BE+GD成立;
(3)①过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.
详解:(1)在正方形ABCD中 CB=CD,∠B=∠CDA=90°,
∴∠CDF=∠B=90°.
在△BCE和△DCF中,
∴△BCE≌△DCF(SAS).
∴CE=CF.
(1)GE=BE+GD成立.理由如下:
∵∠BCD=90°,∠GCE=45°,
∴∠BCE+∠GCD=45°.
∵△BCE≌△DCF(已证),
∴∠BCE=∠DCF.
∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=45°.
∴∠ECG=∠FCG=45°.
在△ECG和△FCG中,
,
∴△ECG≌△FCG(SAS).
∴GE=FG.
∵FG=GD+DF,
∴GE=BE+GD.
(3)①如图1,过点C作CG⊥AD,交AD的延长线于点G,
由(1)和题设知:DE=DG+BE,
设DG=x,则AD=6-x,DE=x+3,
在Rt△ADE中,由勾股定理得:AD1+AE1=DE1,
∴(6-x)1+31=(x+3)1,
解得x=1.
∴DE=1+3=5.
点睛:此题是一道把等腰三角形的判定、勾股定理、正方形的判定和全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.
题号
一
二
三
四
五
总分
得分
人数
中位数
平均数
甲班
27
104
97
乙班
27
106
96
本数(本)
人数(人数)
百分比
5
a
0.2
6
18
0.36
7
14
b
8
8
0.16
合计
c
1
方案
一
二
三
四
A城(套)
24
25
26
27
B城(套)
26
25
24
23
黑龙江省大庆市第六十一中学2024-2025学年数学九上开学检测模拟试题【含答案】: 这是一份黑龙江省大庆市第六十一中学2024-2025学年数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省哈尔滨市香坊区第六十九中学数学九年级第一学期开学联考试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市香坊区第六十九中学数学九年级第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。