2024-2025学年甘肃省嘉峪关市第六中学九上数学开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,1,6,1.则这组数据的中位数是( )
A.5 B.6 C.7 D.1
2、(4分)如图,点P(-3,3)向右平移m个单位长度后落在直线y=2x-1上,则m的值为( )
A.7B.6C.5D.4
3、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( )
A.平均数B.中位数C.方差D.众数
4、(4分)调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是( )
A.20B.30C.0.4D.0.6
5、(4分)若m<n,则下列结论正确的是( )
A.2m>2nB.m﹣4<n﹣4C.3+m>3+nD.﹣m<﹣n
6、(4分)在同一平面直角坐标系中,函数y=ax2+bx与y=﹣bx+a的图象可能是( )
A.B.C.D.
7、(4分)如图,一棵高为16m的大树被台风刮断.若树在地面6m处折断,则树顶端落在离树底部( )处.
A.5mB.7mC.7.5mD.8m
8、(4分)关于一组数据:1,5,6,3,5,下列说法错误的是( )
A.平均数是4B.众数是5C.中位数是6D.方差是3.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=中,自变量x的取值范围是______.
10、(4分)直线关于轴对称的直线的解析式为______.
11、(4分)分式和的最简公分母是__________.
12、(4分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是_____.
13、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.
15、(8分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
16、(8分)计算:(2+)(2﹣)+(﹣)÷.
17、(10分)在一次晚会上,大家做投飞镖的游戏.只见靶子设计成如图的形式.已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖.
(1)分别求出三个区域的面积;
(2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗? 为什么? 如果不公平,请你修改得分规则,使这个游戏公平.
18、(10分)计算:(1);(2)先化简,再求值:,其中
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知y+1与x成正比例,则y是x的_____函数.
20、(4分)如图,在中,,平分,点为中点,则_____.
21、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.
22、(4分)如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=40°,则∠AOD的度数为_____.
23、(4分)反比例函数的图象过点P(2,6),那么k的值是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程.
25、(10分)解下列方程:
(1);(2).
26、(12分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】把这数从小到大排列为:4,5,6,1,1,最中间的数是6,则这组数据的中位数是6,
故选B.
2、C
【解析】
利用一次函数图象上点的坐标特征求出点P平移后的坐标,结合点P的坐标即可求出m的值.
【详解】
解:当y=3时,2x-1=3,
解得:x=2,
∴m=2-(-3)=1.
故选:C.
本题考查一次函数图象上点的坐标特征以及坐标与图形变化-平移,利用一次函数图象上点的坐标特征求出点P平移后的坐标是解题的关键.
3、D
【解析】
根据题意,应该关注哪种尺码销量最多.
【详解】
由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.
故选D
本题考查了数据的选择,根据题意分析,即可完成。属于基础题.
4、A
【解析】
根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.
【详解】
一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.
此题主要考查对频数定义的理解,熟练掌握即可得解.
5、B
【解析】
根据不等式的性质逐个判断即可.
【详解】
解:A、∵m<n,
∴2m<2n,故本选项不符合题意;
B、∵m<n,
∴m﹣4<n﹣4,故本选项符合题意;
C、∵m<n,
∴3+m<3+n,故本选项不符合题意;
D、∵m<n,
∴﹣m>﹣n,故本选项不符合题意;
故选:B.
此题主要考查不等式的性质,解题的关键是熟知不等式的性质辨别方法.
6、B
【解析】
首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.
【详解】
解:A、对于直线y=-bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意;
B、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x=->0,在y轴的右侧,符合题意,图形正确;
C、对于直线y=-bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,对称轴x=-<0,应位于y轴的左侧,故不合题意;
D、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意.
故选:B.
此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.
7、D
【解析】
首先设树顶端落在离树底部xm,根据勾股定理可得62+x2=(16-6)2,再解即可.
【详解】
设树顶端落在离树底部xm,由题意得:
62+x2=(16-6)2,
解得:x1=8,x2=-8(不符合题意,舍去).
所以,树顶端落在离树底部8m处.
故选:D.
此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.
8、C
【解析】
解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;
B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;
C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;
D.这组数据的方差是: [(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;
故选C.
考点:方差;算术平均数;中位数;众数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≠1
【解析】
根据分母不能为零,可得答案.
【详解】
解:由题意,得x-1≠0,
解得x≠1,
故答案为:x≠1.
本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.
10、
【解析】
设函数解析式为:y=kx+b,根据关于y轴对称的两直线k值互为相反数,b值相同可得出答案.
【详解】
∵y=kx+b和y=-3x+1关于y轴对称,
∴可得:k=3,b=1.
∴函数解析式为y=3x+1.
故答案为:y=3x+1.
本题考查一次函数图象与几何变换,掌握直线关于y轴对称点的特点是关键.
11、
【解析】
根据最简公分母的确定方法取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母进行解答.
【详解】
解:分式和的最简公分母是
故答案为:.
本题考查的是最简公分母的概念,取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
12、3
【解析】
在y=﹣x+3中,令x=0则y=3,令y=0,则x=3,
∴OA=3,OB=3,
∴由题意可知,点C在∠AOB的平分线上,
∴m+1=7﹣m,
解得:m=3.
故答案为3.
13、175°
【解析】
如图所示,∵∠ADC、∠BCD的平分线交于点O1,
∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
∵∠O1DC、∠O1CD的平分线交于点O2,
∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
又∵四边形ABCD中,∠DAB+∠ABC=200°,
∴∠ADC+∠DCB=160°,
∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
故答案为175°.
三、解答题(本大题共5个小题,共48分)
14、24m2.
【解析】
连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,
根据△ABC的面积减去△ACD的面积就是所求的面积.
【详解】
解:连接
∵∴
在中,根据勾股定理
在中,
∵
是直角三角形
∴.
本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.
15、原式=﹣3x1+4,当x=时,原式=﹣1.
【解析】
试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.
试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,
当x=时,原式=﹣6+4=﹣1.
考点:整式的化简求值.
16、3-
【解析】
根据平方差公式和多项式除以单项式可以解答本题.
【详解】
解:(2+)(2﹣)+(﹣)÷
=4﹣3+2﹣
=3﹣.
故答案为:3-.
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
17、(1)5π;(2)这个游戏不公平,见解析;修改得分规则:飞镖停落在A、B区域雨薇得5分,飞镖停落在C区域方冉得4分,这样游戏就公平了.
【解析】
(1)从面积比得到概率;(2)通过概率大小进行判定,只要概率相等就公平.
【详解】
(1)SA=π•12=π,SB=π•22-π•12=3π,SC=π•32-π•22=5π;
(2)P(A)=,P(B)=,P(C)=
P(雨薇得分)=×1+×1=,P(方冉得分)=×1=
∵P(雨薇得分)≠P(方冉得分)
∴这个游戏不公平.
修改得分规则:飞镖停落在A、B区域雨薇得5分,飞镖停落在C区域方冉得4分,这样游戏就公平了.
考核知识点:求几何概率.理解概率意义和公式是关键.
18、(1) (2)3.
【解析】
(1)根据特殊角的三角函数值、绝对值化简可以解答本题;
(2)根据异分母分式加减法法则可以化简题目中的式子,然后将x=2代入即可解答.
【详解】
解:(1),
=,
=.
(2),
=,
=,
=,
当x=-2时,原式==3.
本题考查了实数的运算,特殊角的三角函数值以及分式的化简求值,属于基础题,熟记实数混合运算法则即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、一次
【解析】
将y+1看做一个整体,根据正比例函数的定义列出解析式解答即可.
【详解】
y+1与x成正比例,
则y+1=kx,
即y=kx-1,
符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
20、1
【解析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.
本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
21、
【解析】
在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.
【详解】
解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,
∴AB=2CD=1.
∴BC===.
故答案为:.
本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.
22、50°
【解析】
根据旋转的性质得出全等,根据全等三角形性质求出∠DOC=40°,代入∠AOD=∠AOC﹣∠DOC求出即可.
【详解】
解:∵△OAB绕点O逆时针旋转90°到△OCD的位置,∠AOB=40°,
∴△OAB≌△OCD,∠COA=90°,
∴∠DOC=∠AOB=40°,
∴∠AOD=∠AOC﹣∠COD=90°﹣40°=50°,
故答案为50°
23、1.
【解析】
试题分析:∵反比例函数的图象过点P(2,6),∴k=2×6=1,故答案为1.
考点:反比例函数图象上点的坐标特征.
二、解答题(本大题共3个小题,共30分)
24、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
25、(1),;(2),
【解析】
(1)用因式分解法解一元二次方程;
(2)用公式法解一元二次方程.
【详解】
解:(1)
或
∴,;
(2)∵,,,>0
∴方程有两个不相等的实数根
∴
即,.
本题考查解一元二次方程,掌握因式分解的技巧和一元二次求根公式正确计算是本题的解题关键.
26、AC=
【解析】
根据勾股定理求出BD,设AC=x,得到AD=x﹣6,根据勾股定理列方程,解方程得到答案.
【详解】
解:∵CD⊥AB,
∴∠ADC=∠BDC=90°,
在Rt△BCD中,BD==6,
设AC=AB=x,则AD=x﹣6,
在Rt△ACD中,AC2=AD2+CD2,即x2=(x﹣6)2+12,
解得,x=,即AC=.
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运用.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年甘肃省陇南市徽县数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年甘肃省陇南市徽县数学九上开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省陇南市第五中学数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年甘肃省陇南市第五中学数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省厦门市六中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市六中学数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。