中职高教版(2021)第3章 圆锥曲线3.2 双曲线3.2.1 双曲线的标准方程一等奖课件ppt
展开广州塔是目前世界上已经建成的最高的塔桅建筑,广州塔的两侧轮廓线是什么图形?有什么特点?
可以看出,广州塔两侧的轮廓线是关于塔中轴对称的两条曲线,它们分别从塔的腰部向上下两个方向延伸,人们称这样的曲线为双曲线.那么,如何画出双曲线呢?
我们可以通过一个实验来完成.
(1)取一条拉链,把它拉开分成两条,将其中一条剪短.把长的一条的端点固定在点F1出,短的一条的端点固定在点F2处;(2)将笔尖放在拉链锁扣M 处,随着拉链的拉开或闭合,笔尖 就画出一条曲线(图中右边的曲线);(3)再把拉链短的一条的端点固定在点F1处,长的一条的端点固定在点F2处.类似地,笔尖可面出另一条曲线(图中左边的曲线).
拉链是不可伸缩的,笔尖(即点M )在移动过程中,与两个点F1、F2 的距离之差的绝对值始终保特不变.
我们利用椭圆的对称性建立了平面直角坐标系,并推导了椭圆的标准方程.对于双曲线,如何建立适当的坐标系求它的方程呢?
以经过双曲线两焦点F1、F2的直线为x轴,以线段F1F2的垂直平分线为y 轴,建立平面直角坐标系,如图所示.
设M(x,y)为双曲线上的任一点,双曲线的焦距为2c(c>0),则焦点F1 、F2的坐标分别为(-c,0)、(c,0).
又设双曲线上的点M与焦点F1 、F2的距离之差的绝对值为2a(a>0),即|MF1|-|MF2|=2a,则有|MF1|-|MF2|=±2a.
上面方程称为双曲线的标准方程,此时双曲线的焦点F1和F2在x轴上,焦点坐标分别为(-c,0)、(c,0).
解: (1)因为含x项的系数为正数,所以双曲线的焦点在x轴上,并且a²=32,b²=4.于是有 c²=a²+b²=32+4=36,从而可得 c=6,2c=12.所以,双曲线的交点坐标分别为(-6,0)、(6,0),焦距为12.
【巩固1】已知双曲线的焦点在x轴上,且焦距为14,双曲线上一点到两个焦点距离之差的绝对值等于8,请写出双曲线的标准方程.
要判断双曲线的焦点在哪个坐标轴上,可将双曲线的方程化为标准方程.然后,观察标准方程中含x项与含y项的符号,哪项的符号为正,焦点就在哪个坐标轴上.
2.已知双曲线的焦距为 ,双曲线上的点到两个焦点的距离距离之差的绝对值等于4,.求双曲线的标准方程.
(1) 读书部分: 教材章节3.2.1; (2) 书面作业: P76习题3.2的1,2,(1),(2).
中职数学高教版(2021·十四五)拓展模块一(上册)第3章 圆锥曲线3.2 双曲线3.2.1 双曲线的标准方程试讲课课件ppt: 这是一份中职数学高教版(2021·十四五)拓展模块一(上册)<a href="/sx/tb_c4053635_t3/?tag_id=26" target="_blank">第3章 圆锥曲线3.2 双曲线3.2.1 双曲线的标准方程试讲课课件ppt</a>,共22页。PPT课件主要包含了探索新知,典型例题,巩固练习,归纳总结,布置作业,情境导入,实验探究双曲线,双曲线的定义,椭圆定义符号表示,双曲线的标准方程等内容,欢迎下载使用。
中职数学3.2.1 双曲线的标准方程精品ppt课件: 这是一份中职数学<a href="/sx/tb_c4053635_t3/?tag_id=26" target="_blank">3.2.1 双曲线的标准方程精品ppt课件</a>,共22页。PPT课件主要包含了探索新知,典型例题,巩固练习,归纳总结,布置作业,情境导入,实验探究双曲线,双曲线的定义,椭圆定义符号表示,双曲线的标准方程等内容,欢迎下载使用。
中职数学高教版(2021·十四五)基础模块 下册6.4 圆完美版ppt课件: 这是一份中职数学高教版(2021·十四五)基础模块 下册<a href="/sx/tb_c4036611_t3/?tag_id=26" target="_blank">6.4 圆完美版ppt课件</a>,共13页。PPT课件主要包含了新课引入,圆心和半径,圆的标准方程,建系设点,化简方程,找关系式列方程,求方程的一般步骤,x2+y2r2,例题1,求圆的标准方程等内容,欢迎下载使用。