重庆市江津、聚奎中学2023年数学八上期末综合测试试题【含解析】
展开1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.已知为整数,且为正整数,求所有符合条件的的值的和( )
A.0B.12C.10D.8
2.下列各组中,没有公因式的一组是( )
A.ax-bx与by-ayB.6xy-8x2y与-4x+3
C.ab-ac与ab-bcD.(a-b)3与(b-a)2y
3.已知□ABCD的周长为32,AB=4,则BC的长为( )
A.4B.12C.24D.28
4.若式子在实数范围内有意义,则x的取值范围是( )
A.x≥B.x>C.x≥D.x>
5.若,则分式等于 ( )
A.B.C.1D.
6.下列命题中的真命题是( )
A.锐角大于它的余角B.锐角大于它的补角
C.钝角大于它的补角D.锐角与钝角之和等于平角
7.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是( )
A.AE=ACB.∠B=∠DC.BC=DED.∠C=∠E
8.将下列多项式因式分解,结果中不含有因式(a+1)的是( )
A.a2-1
B.a2+a
C.a2+a-2
D.(a+2)2-2(a+2)+1
9.下列各数中,属于无理数的是( )
A.B.1.414C.D.
10.小亮对一组数据16,18,20,20,3■,34进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,但小亮依然还能准确获得这组数据的( )
A.众数B.方差C.中位数D.平均数
二、填空题(每小题3分,共24分)
11.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为_____.
12.若,且,则____________.
13.如图,已知中,,,垂足为点D,CE是AB边上的中线,若,则的度数为____________.
14.用科学记数法表示下列各数:0.000 04=_____.
15.若,,,则,,的大小关系用"连接为________.
16.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.
17.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_______.
18.如图,在平面直角坐标系中,,,点是第一象限内的点,且是以为直角边的等腰直角三角形,则点的坐标为__________.
三、解答题(共66分)
19.(10分)如图,在的正方形网格中,每个小正方形的边长为,小正方形的顶点叫做格点,连续任意两个格点的线段叫做格点线段.
(1)如图1,格点线段、,请添加一条格点线段,使它们构成轴对称图形.
(2)如图2,格点线段和格点,在网格中找出一个符合的点,使格点、、、四点构成中心对称图形(画出一个即可).
20.(6分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是 .
(1)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
21.(6分)解二元一次方程组
22.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图(1)中,画一个三角形,使它的三边长都是有理数;
(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;
(3)在图(3)中,画一个正方形,使它的面积是10.
23.(8分)如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.
24.(8分)如图,是等腰直角三角形,,点是的中点,点,分别在,上,且,探究与的关系,并给出证明.
25.(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
26.(10分)(模型建立)
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△CDA≌△BEC.
(模型运用)
(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.
(模型迁移)
如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】先把化简,再根据要求带入符合要求的数,注意检查分母是否为零.
【详解】原式=
=
=.
因为a为整数且为整数,
所以分母或,
解得a=4,2,6,0,.
检验知a=2时原式无意义,应舍去,a的值只能为4,6,0.所以所有符合条件的a的值的和为4+6+0=10.
故选C.
【点睛】
本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.
2、C
【分析】将每一组因式分解,找到公因式即可.
【详解】解:A、ax-bx=(a-b)x,by-ay=(b-a)y,有公因式(a-b),故本选项错误;
B、6xy-8x2y=2xy(3-4x)与-4x+3=-(4x-3)有公因式(4x-3),故本选项错误;
C、ab-ac=a(b-c)与ab-bc=b(a-c)没有公因式,故本选项正确;
D、(a-b)3x与(b-a)2y有公因式(a-b)2,故本选项错误.
故选:C.
【点睛】
本题考查公因式,熟悉因式分解是解题关键.
3、B
【分析】根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解
【详解】∵四边形ABCD是平行四边形
∴AB=CD,AD=BC
∵平行四边形ABCD的周长是32
∴2(AB+BC)=32
∴BC=12
故正确答案为B
【点睛】
此题主要考查平行四边形的性质
4、A
【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
【详解】解:由题意得,,
故选A.
【点睛】
本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
5、D
【分析】由分式的加减法法则,“异分母的分式相加减,先通分,化为同分母的分式,然后分母不变,把分子相加减”可知,又,即可求解.
【详解】解: ,
又∵,故原式=-1.
故选:D.
【点睛】
本题主要考查分式的加减,熟悉掌握分式的加减法法则是关键.
6、C
【详解】A、锐角大于它的余角,不一定成立,故本选项错误;
B、锐角小于它的补角,故本选项错误;
C、钝角大于它的补角,本选项正确;
D、锐角与钝角之和等于平角,不一定成立,故本选项错误.
故选C.
7、C
【解析】根据∠1=∠2可利用等式的性质得到∠BAC=∠DAE,然后再根据所给的条件利用全等三角形的判定定理进行分析即可.
【详解】解:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
∴∠BAC=∠DAE,
A、添加AE=AC,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
B、添加∠B=∠D,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;
C、添加BC=DE,不能判定△ABC≌△ADE,故此选项符合题意;
D、添加∠C=∠E,可利用AAS定理判定△ABC≌△ADE,故此选项不合题意;
故选C.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
8、C
【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.
考点:因式分解.
9、C
【分析】无理数就是无限循环小数,依据定义即可作出判断.
【详解】A. 是有理数,错误
B. 1.414是有限小数,是有理数,错误
C. 是无限不循环小数,是无理数,正确
D. =2是整数,错误
故选C.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.
10、C
【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断.
【详解】解:这组数据的众数、方差和平均数都与第5个数有关,而这组数据的中位数为20与20的平均数,与第5个数无关.
故选:C.
【点睛】
本题考查了方差:它描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.
二、填空题(每小题3分,共24分)
11、2.1×10﹣1
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:将21nm用科学记数法可表示为21×10﹣9=2.1×10﹣1.
故答案为:2.1×10﹣1.
【点睛】
本题考查了科学记数法的表示方法,科学记数法的表现形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
12、27
【分析】将x+y的值代入由(x+3)(y+3)=26变形所得式子xy+3(x+y)=17,求出xy的值,再将xy、x+y的值代入原式=(x+y)2+xy计算可得.
【详解】解:∵(x+3)(y+3)=26,
∴xy+3x+3y+9=26,
则xy+3(x+y)=17,
将x+y=5代入得xy+15=17,
则xy=2,
∴
=(x+y)2+xy
=25+2
=27.
故答案为:27.
【点睛】
本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
13、
【分析】本题可利用直角三角形斜边中线等于斜边的一半求证边等,并结合直角互余性质求解对应角度解题即可.
【详解】∵∠ACB=,CE是AB边上的中线,
∴EA=EC=EB,
又∵∠B=,
∴∠ACE=∠A=,
∵,
∴∠DCB=.
故.
故填:.
【点睛】
本题考查直角三角形性质,考查“斜中半”定理,角度关系则主要通过直角互余性质求解即可.
14、4×10﹣1
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:0.000 04=4×10﹣1;
故答案为:4×10﹣1.
【点睛】
此题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
15、
【分析】根据零指数幂得出a的值,根据平方差公式运算得出b的值,根据积的乘方的逆应用得出c的值,再比较大小即可.
【详解】解:∵,
,
∴ .
故答案为:.
【点睛】
本题考查了零指数幂,平方差公式的简便运算,积的乘方的逆应用,解题的关键是根据上述运算法则计算出a,b,c的值.
16、1.
【解析】试题分析:∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=2.该直角三角形的面积S=×3×2=1.故答案为1.
考点:勾股定理.
17、120°或20°
【详解】根据等腰三角形的特点,可分两种情况:顶角与底角的度数比是1:4或底角与顶角的度数比是1:4,根据三角形的内角和定理就可求解:
当顶角与底角的度数比是1:4时,则等腰三角形的顶角是180°×=20°;
当底角与顶角的度数比是1:4时,则等腰三角形的顶角是180°×=120°.
即该等腰三角形的顶角为20°或120°.
考点:等腰三角形
18、或
【解析】设C的点坐标为,先根据题中条件画出两种情况的图形(见解析),再根据等腰直角三角形的性质、三角形全等的判定定理与性质、点坐标的定义分别求解即可.
【详解】设C的点坐标为
由题意,分以下两种情况:
(1)如图1,是等腰直角三角形,
过点A作轴,过点C作x轴的垂线,交DA的延长线于点E
则
又
则点C的坐标为
(2)如图2,是等腰直角三角形,
过点A作轴,过点C作轴
则
同理可证:
则点C的坐标为
综上,点C的坐标为或
故答案为:或.
【点睛】
本题考查了三角形全等的判定定理与性质、等腰直角三角形的性质、点的坐标等知识点,依据题意,正确分两种情况并画出图形是解题关键.
三、解答题(共66分)
19、(1)画图见解析.(2)画图见解析.
【分析】(1)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合得出答案即可;
(2)利用中心对称图形的定义得出D点位置即可;
【详解】(1)如图,
(2)如图,
【点睛】
本题考查了轴对称、中心对称作图,以及平行四边形的判定与性质,掌握画图的方法和图形的特点是解题的关键.
20、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.
【详解】(1)①由旋转可知:AC=DC,
∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.
∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.
②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.
由①可知:△ADC是等边三角形, DE∥AC,∴DN=CF,DN=EM.
∴CF=EM.
∵∠C=90°,∠B =30°
∴AB=1AC.
又∵AD=AC
∴BD=AC.
∵
∴.
(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中, ,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;
(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,
,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cs30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的长为3或2.
21、,.
【分析】利用加减消元法求解可得.
【详解】,
①+②,得,
,
把代入②,得,
解得,
所以原方程的解为.
【点睛】
本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.
22、详见解析.
【分析】(1)画一个边长3,4,5的三角形即可;
(2)利用勾股定理,找长为无理数的线段,画三角形即可;
(3)画边长为的正方形即可.
【详解】三边分别为3,4,5(如图);
(2)
(3)画一个边长为的正方形.
【点睛】
考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.
23、24m2
【分析】连接AC,利用勾股定理和逆定理可以得出△ACD和△ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.
【详解】解:连接AC,
由勾股定理可知:AC=,
又∵AC2+BC2=52+122=132=AB2,
∴△ABC是直角三角形,
∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(米2).
【点睛】
本题考查了勾股定理以及勾股定理的逆定理的应用,解题的关键是作出辅助线得到直角三角形.
24、,,证明见解析
【分析】连接CD,首先根据△ABC是等腰直角三角形,∠C=90°,点D是AB的中点得到CD=AD,CD⊥AD,从而得到△DCE≌△DAF,证得DE=DF,DE⊥DF.
【详解】,
证明如下:
连接
∴是等腰直角三角形,
∴
∵为的中点.
∵且平分
∵
∵
在和中
∴()
∴
∵于
∴
∴
即
【点睛】
本题考查了全等三角形的判定与性质、等腰直角三角形的性质和判定,证得是解题的关键.
25、 (1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65 m的运动员能进入复赛.
【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a的值是25;
(2)、观察条形统计图得:=1.61;
∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;
将这组数据从小到大排列为,其中处于中间的两个数都是1.1, 则这组数据的中位数是1.1.
(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,
∴根据中位数可以判断出能否进入前9名;
∵1.65m>1.1m, ∴能进入复赛
考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数
26、(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)
【分析】(1)由“AAS”可证△CDA≌△BEC;
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;
(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.
【详解】(1)证明:∵AD⊥DE,BE⊥DE,
∴∠D=∠E=90°,
∴∠BCE+∠CBE=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∴∠ACD=∠CBE,
又CA=BC,∠D=∠E=90°
∴△CDA≌△BEC(AAS)
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E
∵直线y=x+4与坐标轴交于点A、B,
∴A(﹣3,0),B(0,4),
∴OA=3,OB=4,
由(1)得△BOA≌△AED,
∴DE=OA=3,AE=OB=4,
∴OE=7,
∴D(﹣7,3)
设l2的解析式为y=kx+b,
得
解得
∴直线l2的函数表达式为:
(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,
∵BE=2,∠BCO=30°,BE⊥OC
∴BC=4,
∵将线段AP绕点P顺时针旋转30°得到BP,
∴AP=BP,∠APB=30°,
∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,
∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,
∴△OAP≌△CPB(AAS)
∴OP=BC=4,
∴点P(4,0)
若点P在x轴负半轴,如图4,过点B作BE⊥OC,
∵BE=2,∠BCO=30°,BE⊥OC
∴BC=4,
∵将线段AP绕点P顺时针旋转30°得到BP,
∴AP=BP,∠APB=30°,
∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,
∴∠APE=∠PBC,
∵∠AOE=∠BCO=30°,
∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB
∴△OAP≌△CPB(AAS)
∴OP=BC=4,
∴点P(﹣4,0)
综上所述:点P坐标为(4,0)或(﹣4,0)
【点睛】
本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.
重庆市江津聚奎中学联盟2023-2024学年数学九年级第一学期期末监测试题含答案: 这是一份重庆市江津聚奎中学联盟2023-2024学年数学九年级第一学期期末监测试题含答案,共9页。试卷主要包含了如图,在中,,,,不等式组的解集是,如图,二次函数的图象与轴交于点等内容,欢迎下载使用。
2023-2024学年重庆市江津、聚奎中学八年级数学第一学期期末达标测试试题含答案: 这是一份2023-2024学年重庆市江津、聚奎中学八年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了下列运算正确的是,下列各式中,正确的是等内容,欢迎下载使用。
2022-2023学年重庆市江津聚奎中学联盟七年级数学第二学期期末调研试题含答案: 这是一份2022-2023学年重庆市江津聚奎中学联盟七年级数学第二学期期末调研试题含答案,共7页。试卷主要包含了一组数,一元二次方程x2-9=0的解为等内容,欢迎下载使用。