重庆合川区南屏中学2023-2024学年数学八年级第一学期期末调研模拟试题【含解析】
展开注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )
A.45°B.135°C.45°或67.5°D.45°或135°
2.直线过点,,则的值是( )
A.B.C.D.
3.若2x + m 与 x + 2 的乘积中不含的 x 的一次项,则m 的值为( )
A.-4B.4C.-2D.2
4.在平面直角坐标系xOy中,点A(-1,-2)关于x轴对称的点的坐标是
A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)
5.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
6.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )
A.cmB.2cmC.3cmD.4cm
7.在△ABC中,若∠A=80°,∠B=30°,则∠C的度数是( )
A.70°B.60°C.80°D.50°
8.如图,在△ABC中,AB= 6 ,AC= 7,BC= 5, 边AB的垂直平分线交AC于点D,则△BDC的周长是( )
A.18B.13C.12D.11
9.若分式的值为零,则x的值为( )
A.3B.3或-3C.-3D.0
10.的值是( )
A.16B.2C.D.
11.有下列长度的三条线段,能组成三角形的是( )
A.2cm,3cm,4cmB.1cm,4cm,2cm
C.1cm,2cm,3cmD.6cm,2cm,3cm
12.如图所示,在中,,则为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如果有:,则=____.
14.在实数范围内分解因式:____.
15.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.
16.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是 .
17.多项式1+9x2加上一个单项式后,使它能成为一个整式的完全平方式,那么加上的单项式可以是_____(填上一个你认为正确的即可).
18.已知:如图, ,点在上,则本题中全等三角形有___________对.
三、解答题(共78分)
19.(8分)如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.
20.(8分)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.
21.(8分)已知:△ABC中,BO平分∠ABC,CO平分∠ACB
(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由
(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求证:∠P=∠BOE+∠COF;
(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.
22.(10分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.
(3)试比较第6天和第13天的销售金额哪天多?
23.(10分)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?
24.(10分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?
25.(12分)如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高.求∠DBC的 度数.
26.在边长为1的小正方形组成的正方形网格中,建立如图所示的平面真角坐标系,已知格点三角形(三角形的三个顶点都在格点上)
(1)画出关于直线对称的;并写出点、、的坐标.
(2)在直线上找一点,使最小,在图中描出满足条件的点(保留作图痕迹),并写出点的坐标(提示:直线是过点且垂直于轴的直线)
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】①如图,等腰三角形为锐角三角形,
∵BD⊥AC,∠ABD=45°,
∴∠A=45°,
即顶角的度数为45°.
②如图,等腰三角形为钝角三角形,
∵BD⊥AC,∠DBA=45°,
∴∠BAD=45°,
∴∠BAC=135°.
故选:D.
2、B
【分析】分别将点,代入即可计算解答.
【详解】解:分别将点,代入,
得:,解得,
故答案为:B.
【点睛】
本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.
3、A
【分析】先将(2x + m) (x + 2)根据多项式乘多项式展开,找出所有含x的一次项,合并系数,使含x的一次项的系数为0,即可求出m的值.
【详解】解:,
∵乘积中不含x的一次项,
∴,
∴.
故答案选:A.
【点睛】
本题考查多项式乘多项式的运算,属于基础题.理解不含某一项就是指含有这项的系数为0,注意合并同类项求解.
4、C
【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.
【详解】点A(-1,-2)关于x轴对称的点的坐标是(-1,2).
故选C.
【点睛】
本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.
5、B
【详解】0.056用科学记数法表示为:0.056=,故选B.
6、C
【分析】根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.
【详解】∵ED⊥AB,∠A=30°,∴AE=2ED.
∵AE=6cm,∴ED=3cm.
∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.
故选C.
【点睛】
本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.
7、A
【分析】根据三角形的内角和定理,即可求出答案.
【详解】解:∵∠A=80°,∠B=30°,
∴,
故选:A.
【点睛】
本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°.
8、C
【解析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.
【详解】∵ED是AB的垂直平分线,∴AD=BD.
∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=7+5=1.
故选C.
【点睛】
本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.
9、C
【分析】分式值为零的条件:分子为0且分母不为0时,分式值为零.
【详解】解:由题意得,解得,则x=-3
故选C.
【点睛】
本题考查分式值为零的条件,本题属于基础应用题,只需学生熟练掌握分式值为零的条件,即可完成.
10、B
【分析】根据算术平方根的定义求值即可.
【详解】=1.
故选:B.
【点睛】
本题考查算术平方根,属于基础题型.
11、A
【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.
【详解】A、2+3>4,能围成三角形;
B、1+2<4,所以不能围成三角形;
C、1+2=3,不能围成三角形;
D、2+3<6,所以不能围成三角形;
故选:A.
【点睛】
本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.
12、D
【分析】根据直角三角形的两个锐角互余的性质解答.
【详解】解:在△ABC中,∠C=90°,则x+2x=90°.
解得:x=30°.
所以2x=60°,即∠B为60°.
故选:D.
【点睛】
本题考查了直角三角形的性质,直角三角形的两个锐角互余,由此借助于方程求得答案.
二、填空题(每题4分,共24分)
13、1
【分析】根据算术平方根和绝对值的非负性即可求解.
【详解】解:由题意可知:,且,
而它们相加为0,故只能是且,
∴,
∴,
故答案为:1.
【点睛】
本题考查了算术平方根的非负性,绝对值的非负性,熟练掌握算术平方根的概念及绝对值的概念是解决本题的关键.
14、
【分析】将原式变形为,再利用平方差公式分解即可得.
【详解】
=
=
=
,
故答案为:.
【点睛】
本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.
15、如果两个角相等,那么这两个角是对顶角.
【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式,再利用把一个命题的题设和结论互换即可得到其逆命题.
【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,
∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.
故答案为:如果两个角相等,那么这两个角是对顶角.
【点睛】
本题考查了命题的条件和结论的叙述以及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
16、(﹣4,3).
【解析】试题分析:
解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,
∵OA绕坐标原点O逆时针旋转90°至OA′,
∴OA=OA′,∠AOA′=90°,
∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,
∴∠OAB=∠A′OB′,
在△AOB和△OA′B′中,
,
∴△AOB≌△OA′B′(AAS),
∴OB′=AB=4,A′B′=OB=3,
∴点A′的坐标为(﹣4,3).
故答案为(﹣4,3).
考点:坐标与图形变化-旋转
17、6x或﹣6x或x2或﹣1或﹣9x1.
【分析】分9x1是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.
【详解】解:①当9x1是平方项时,1±6x+9x1=(1±3x)1,
∴可添加的项是6x或﹣6x,
②当9x1是乘积二倍项时,1+9x1+x2=(1+x1)1,
∴可添加的项是x2.
③添加﹣1或﹣9x1.
故答案为:6x或﹣6x或x2或﹣1或﹣9x1.
【点睛】
本题考查了完全平方式,解题过程中注意分类讨论,熟练掌握完全平方式的结构特征是解题的关键.
18、1
【分析】由AB=AD,BC=DC,AC为公共边可以证明△ABC≌△ADC,再由全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,进而可推得△ABP≌△ADP,△CBP≌△CDP.
【详解】在△ABC和△ADC中,
,
∴△ABC≌△ADC;
∴∠BAC=∠DAC,∠BCA=∠DCA,
在△ABP和△ADP中,
,
∴△ABP≌△ADP,
在△CBP和△CDP中,
,
△CBP≌△CDP.
综上,共有1对全等三角形.
故答案为:1.
【点睛】
本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
三、解答题(共78分)
19、2
【分析】根据等边对等角可得∠B=∠C,再利用三角形的内角和定理求出∠BAC=120°,然后求出∠CAD=30°,从而得到∠CAD=∠C,根据等角对等边可得AD=CD,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2AD,然后根据BC=BD+CD列出方程求解即可
【详解】∵AB=AC,
∴∠B=∠C=30°,
∴∠BAC=180°-2×30°=120°,
∵DA⊥BA,
∴∠BAD=90°,
∴∠CAD=120°-90°=30°,
∴∠CAD=∠C,
∴AD=CD,
在Rt△ABD中,
∵∠B=30°,∠BAD=90°,
∴BD=2AD,
∴BC=BD+CD=2AD+AD=3AD,
∵BC=6cm,
∴AD=2cm.
【点睛】
本题主要考查了等腰三角形性质以及直角三角形性质的综合运用,熟练掌握相关概念是解题关键.
20、(1)S=;(2)y=﹣x+;(3)s=﹣m+,(0≤m≤),Q(0,).
【分析】(1)根据点P坐标可得OB的长,根据含30°角的直角三角形的性质及勾股定理可求出OA的长,即可求出△ABC的面积;
(2)设AB的解析式y=kx+b,把A(1,0),B(0,)代入列方程组即可求出b、k的值,进而可得直线AB解析式;
(3)设移动过程中,AB与x轴的交点为D,可得OB=-m,根据含30°角的直角三角形的性质可用m表示出OD的长,即可得出s关于m的关系式,把m=0代入即可求出点Q坐标.
【详解】∵与m轴相交于点P(,0),
∴m=时,s=0,
∴OB=,
∵∠ABC=30°,
∴AB=2OA,
∴OA2+OB2=AB2,即OA2+3=4OA2,
解得:OA=1,(负值舍去)
∴S△ABC==.
(2)∵B(0,),A(1,0),
设AB的解析式y=kx+b,
∴,
∴,
∴y=﹣x+;
(3)设移动过程中,AB与x轴的交点为D,
∵OB=,平移的距离为m,
∴平移后OB=﹣m,
∵∠ABC=30°,
∴BD=2OD,
∴OD2+OB2=BD2,即OD2+(﹣m)2=4OD2
∴OD=1﹣m,
∵s在第一象限,OB=,
∴0≤m≤,
∴s=×(﹣m)×(1﹣m)=﹣m+(0≤m≤),
当m=0时,s=,
∴Q(0,).
【点睛】
本题考查含30°角的直角三角形的性质、待定系数法求一次函数解析式及勾股定理,熟练掌握30°角所对的直角边等于斜边的一半的性质是解题关键.
21、(1)∠BOC=90°+∠A,理由详见解析;(2)详见解析;(3)∠BOE+∠COF﹣∠P=180°.
【分析】(1)根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解;
(2)证明∠P=90°﹣∠A,得到∠P+∠BOC=180°即可解决问题;
(3)画出图形由∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,可得∠BOE+∠COF﹣∠P=180°.
【详解】解:(1)∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB
=(∠ABC+∠ACB)
=(180°﹣∠A)
=90°﹣∠A,
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;
(2)∵BP、CP分别平分外角∠DBC、∠GCB,
∴∠PBC=∠CBD,∠PCB=∠BCG,
∴∠P=180°﹣∠CBP﹣∠BCP)
=180°﹣(∠CBD+∠BCG)
=180°﹣(∠A+∠ACB+∠A+∠ABC)
=180°﹣(180°+∠A)
=90°﹣∠A,
∴∠P+∠BOC=180°,
∵∠BOC+∠BOE+∠COF=180°,
∴∠P=∠BOE+∠COF;
(3)如图3中,
∵∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,
∴∠BOE+∠COF﹣∠P=180°.
【点睛】
本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22、(1)日销售量最大为120千克;(2) ;(3)第6天比第13天销售金额大.
【解析】(1)观察图(1),可直接得出第12天时,日销售量最大120千克;
(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;
(3)观察图(1),根据(2)求出的函数解析式,分别求出第6天和第13天的日销售量,再根据图(2),求出第6天和第13天的销售单价,求出第6天和第13天的销售金额,最后比较即可.
【详解】(1)由图(1)可知,x=12时,日销售量最大,为120千克;
(2)0≤x<12时,设y=k1x,
∵函数图象经过点(12,120),
∴12k1=120,
解得k1=10,
∴y=10x,
12≤x≤20时,设y=k2x+b1,
∵函数图象经过点(12,120),(20,0),
∴,
解得,
∴y=﹣15x+300,
综上所述,y与x的函数关系式为;
(3)5≤x≤15时,设z=k3x+b2,
∵函数图象经过点(5,32),(15,12),
∴,
解得,
∴z=﹣2x+42,
x=6时,y=60,z=﹣2×6+42=30,
∴销售金额=60×30=1800元,
x=13时,y=﹣15×13+300=105,
z=﹣2×13+42=16,
∴销售金额=105×16=1680元,
∵1800>1680,
∴第6天比第13天销售金额大.
【点睛】
本题考查了一次函数的应用,涉及了待定系数法,二元一次方程组的解法,弄清题意,准确识图是解题的关键.应注意自变量的取值范围.
23、(1)每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车;(2)1名
【分析】(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设还需要招聘m名新工人才能完成一个月的生产计划,根据工作总量=工作效率×人数结合计划一个月生产200辆,即可得出关于m的一元一次方程,解之即可得出结论.
【详解】解:(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,
依题意,得:,
解得:.
答:每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车.
(2)设还需要招聘m名新工人才能完成一个月的生产计划,
依题意,得:4×30+2m=200,
解得:m=1.
答:还需要招聘1名新工人才能完成一个月的生产计划.
【点睛】
本题考查的是用二元一次方程组解决问题中的工程问题,理解题意,找准数量关系列出方程组是解答关键.
24、2元、6元
【解析】根据对话分别利用总钱数得出等式求出答案.
【详解】解:设中性笔和笔记本的单价分别是元、元,根据题意可得:
,
解得:,
答:中性笔和笔记本的单价分别是2元、6元.
【点睛】
此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.
25、18°
【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.
【详解】解:∵∠C=∠ABC=2∠A,
∴∠C+∠ABC+∠A=5∠A=180°,
∴∠A=36°.
则∠C=∠ABC=2∠A=72°.
又∵BD是AC边上的高,
∴∠BDC=90°,
则∠DBC=90°-∠C=18°.
【点睛】
此题考查了三角形内角和定理的运用,三角形的高线,以及直角三角形两锐角互余等知识,三角形的内角和是180°.
26、(1)图详见解析,A1(3,2),B1(0,1),C1(1,4);(2)点D坐标为(-1,2).
【分析】(1)分别作出点A,B,C关于直线x=−1的对称的点,然后顺次连接,并写出A1,B1,C1的坐标.
(2)作出点B关于x=−1对称的点B1,连接CB1,与x=−1的交点即为点D,此时BD+CD最小,写出点D的坐标.
【详解】解:所作图形如图所示:
A1(3,2),B1(0,1),C1(1,4);
(2)作出点B关于x=-1对称的点B1,
连接CB1,与x=-1的交点即为点D,
此时BD+CD最小,点D坐标为(-1,2).
【点睛】
本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.
重庆合川区南屏中学2023-2024学年数学八年级第一学期期末学业质量监测试题【含解析】: 这是一份重庆合川区南屏中学2023-2024学年数学八年级第一学期期末学业质量监测试题【含解析】,共21页。试卷主要包含了下列四个实数中,无理数是,等于,点向右平移个单位后的坐标为等内容,欢迎下载使用。
重庆合川区凉亭中学2023年八年级数学第一学期期末教学质量检测模拟试题【含解析】: 这是一份重庆合川区凉亭中学2023年八年级数学第一学期期末教学质量检测模拟试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列表情中,是轴对称图形的是等内容,欢迎下载使用。
重庆合川区凉亭中学2023-2024学年数学八年级第一学期期末监测试题【含解析】: 这是一份重庆合川区凉亭中学2023-2024学年数学八年级第一学期期末监测试题【含解析】,共20页。试卷主要包含了答题时请按要求用笔,某村的居民自来水管道需要改造,如图所示分别平分和,则的度数为等内容,欢迎下载使用。