搜索
    上传资料 赚现金
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(原卷版).doc
    • 讲义
      新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(含解析).doc
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)01
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)02
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)03
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)01
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)02
    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)

    展开
    这是一份新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第4章§44简单的三角恒等变换原卷版doc、新高考数学一轮复习讲义第4章§44简单的三角恒等变换含解析doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。


    知识梳理
    1.二倍角的正弦、余弦、正切公式
    (1)公式S2α:sin 2α=2sin αcs α.
    (2)公式C2α:cs 2α=cs2α-sin2α=2cs2α-1=1-2sin2α.
    (3)公式T2α:tan 2α=eq \f(2tan α,1-tan2α).
    2.常用的部分三角公式
    (1)1-cs α=2sin2eq \f(α,2),1+cs α=2cs2eq \f(α,2).(升幂公式)
    (2)1±sin α=eq \b\lc\(\rc\)(\a\vs4\al\c1(sin \f(α,2)±cs \f(α,2)))2.(升幂公式)
    (3)sin2α=eq \f(1-cs 2α,2),cs2α=eq \f(1+cs 2α,2),tan2α=eq \f(1-cs 2α,1+cs 2α).(降幂公式)
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)半角的正弦、余弦公式实质就是将倍角的余弦公式逆求而得来的.( )
    (2)存在实数α,使tan 2α=2tan α.( )
    (3)cs2eq \f(θ,2)=eq \f(1+cs θ,2).( )
    (4)tan eq \f(α,2)=eq \f(sin α,1+cs α)=eq \f(1-cs α,sin α).( )
    教材改编题
    1.cs2eq \f(π,12)-cs2eq \f(5π,12)等于( )
    A.eq \f(1,2) B.eq \f(\r(3),3) C.eq \f(\r(2),2) D.eq \f(\r(3),2)
    2.若角α满足sin α+2cs α=0,则tan 2α等于( )
    A.-eq \f(4,3) B.eq \f(3,4) C.-eq \f(3,4) D.eq \f(4,3)
    3.若α为第二象限角,sin α=eq \f(5,13),则sin 2α等于( )
    A.-eq \f(120,169) B.-eq \f(60,169) C.eq \f(120,169) D.eq \f(60,169)
    题型一 三角函数式的化简
    例1 (1若α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),tan 2α=eq \f(cs α,2-sin α),则tan α等于( )
    A.eq \f(\r(15),15) B.eq \f(\r(5),5) C.eq \f(\r(5),3) D.eq \f(\r(15),3)
    (2)已知sin α+cs α=eq \f(2\r(3),3),则sin2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=________.
    思维升华
    (1)三角函数式的化简要遵循“三看”原则:
    一看角,二看名,三看式子结构与特征.
    (2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.
    跟踪训练1 (1)若f(α)=2tan α-eq \f(2sin2\f(α,2)-1,2sin \f(α,2)·cs \f(α,2)),则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)))的值是________.
    (2)化简:eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,tan \f(α,2))-tan \f(α,2)))·eq \b\lc\(\rc\)(\a\vs4\al\c1(1+tan α·tan \f(α,2)))=________.
    题型二 三角函数式的求值
    命题点1 给角求值
    例2 计算:(1)sin 10°·sin 30°·sin 50°·sin 70°;
    (2)eq \f(1,2sin 10°)-eq \f(\r(3),2cs 10°);
    (3)eq \f(cs 10°1+\r(3)tan 10°-2sin 50°,\r(1-cs 10°)).
    命题点2 给值求值
    例3 已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))+eq \r(3)cs α=eq \f(1,3),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,6)))等于( )
    A.eq \f(2,3) B.eq \f(2,9) C.-eq \f(1,9) D.-eq \f(7,9)
    命题点3 给值求角
    例4 已知 sin α=eq \f(\r(2),10),cs β=eq \f(3\r(10),10),且α,β为锐角,则α+2β= .
    思维升华
    (1)给值(角)求值问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法.
    (2)给值(角)求值问题的一般步骤
    ①化简条件式子或待求式子;
    ②观察条件与所求式子之间的联系,从函数名称及角入手;
    ③将已知条件代入所求式子,化简求值.
    跟踪训练2 (1)已知α∈(0,π),sin 2α+cs 2α=cs α-1,则sin 2α等于( )
    A.eq \f(3,4) B.-eq \f(3,8)
    C.-eq \f(3,4) 或0 D.eq \f(3,8)
    (2)已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(15°-\f(α,2)))=tan 210°,则sin(60°+α)的值为( )
    A.eq \f(1,3) B.-eq \f(1,3) C.eq \f(2,3) D.-eq \f(2,3)
    题型三 三角恒等变换的综合应用
    例5 已知f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))+2eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(3π,4))).
    (1)求f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))的值;
    (2)若锐角α满足f(α)=eq \f(\r(3),3),求sin 2α的值.
    思维升华
    (1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.
    (2)形如y=asin x+bcs x化为y=eq \r(a2+b2)sin(x+φ),可进一步研究函数的周期性、单调性、最值与对称性.
    跟踪训练3 已知3sin α=2sin2eq \f(α,2)-1.
    (1)求sin 2α+cs 2α的值;
    (2)已知α∈(0,π),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),2tan2β-tan β-1=0,求α+β的值.
    课时精练
    1.已知x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),0)),cs(π-x)=-eq \f(4,5),则tan 2x等于( )
    A.eq \f(7,24) B.-eq \f(7,24) C.eq \f(24,7) D.-eq \f(24,7)
    2.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(π,4)))=eq \f(2\r(2),3),则sin 2θ的值为( )
    A.eq \f(7,9) B.-eq \f(7,9) C.eq \f(2,9) D.-eq \f(2,9)
    3.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))=eq \f(\r(2),3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(2α-\f(4π,3)))等于( )
    A.-eq \f(5,9) B.eq \f(5,9) C.-eq \f(1,3) D.eq \f(1,3)
    4.公元前六世纪,古希腊的毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分割约为0.618,这一数值也可以表示为m=2sin 18°,若4m2+n=16,则eq \f(m\r(n),2cs227°-1)的值为( )
    A.1 B.2 C.4 D.8
    5.(多选)下列计算结果正确的是( )
    A.cs(-15°)=eq \f(\r(6)-\r(2),4)
    B.sin 15°sin 30°sin 75°=eq \f(1,8)
    C.cs(α-35°)cs(25°+α)+sin(α-35°)sin(25°+α)=-eq \f(1,2)
    D.2sin 18°cs 36°=eq \f(1,2)
    6.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金△ABC中,eq \f(BC,AC)=eq \f(\r(5)-1,2),根据这些信息,可得sin 54°等于( )
    A.eq \f(2\r(5)-1,4) B.eq \f(\r(5)+1,4) C.eq \f(\r(5)+4,8) D.eq \f(\r(5)+3,8)
    7.eq \f(sin 12°2cs212°-1,\r(3)-tan 12°)= .
    8.已知tan 2θ=-2eq \r(2),eq \f(π,4)<θ9.化简并求值.
    (1)eq \f(\r(3)-4sin 20°+8sin320°,2sin 20°sin 480°); (2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,cs280°)-\f(3,cs210°)))·eq \f(1,cs 20°).
    10.(1)已知tan(α+β)=eq \f(3,5),taneq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,3)))=eq \f(1,3),求taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,3)));
    (2)已知cs 2θ=-eq \f(4,5),eq \f(π,4)<θ(3)已知sin(α-2β)=eq \f(4\r(3),7),cs(2α-β)=-eq \f(11,14),且0<β11.已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),tan α=eq \f(cs 2β,1-sin 2β),则( )
    A.α+β=eq \f(π,2) B.α-β=eq \f(π,4)
    C.α+β=eq \f(π,4) D.α+2β=eq \f(π,2)
    12. 魏晋南北朝时期,祖冲之利用割圆术以正24 576边形,求出圆周率π约等于eq \f(355,113),和真正的值相比,其误差小于八亿分之一,这个记录在一千年后才被打破.若已知π的近似值还可以表示成4sin 52°,则eq \f(1-2cs27°,π\r(16-π2))的值为( )
    A.-eq \f(1,8) B.-8 C.8 D.eq \f(1,8)
    13.(多选)若sin eq \f(α,2)=eq \f(\r(3),3),α∈(0,π),则( )
    A.cs α=eq \f(1,3)
    B.sin α=eq \f(2,3)
    C.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(α,2)+\f(π,4)))=eq \f(\r(6)+2\r(3),6)
    D.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(α,2)-\f(π,4)))=eq \f(2\r(3)-\r(6),6)
    14.已知α,β均为锐角,sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6)+α))=-eq \f(3,5),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,3)))=eq \f(5,13),则sin(α+β)= ,cs(2α-β)= .
    15.f(x)满足:∀x1,x2∈(0,1)且x1≠x2,都有eq \f(x2fx1-x1fx2,x1-x2)<0.a=sin 7°sin 83°,b=eq \f(tan 8°,1+tan28°),c=cs2eq \f(5π,24)-eq \f(1,2),则eq \f(fa,a),eq \f(fb,b),eq \f(fc,c)的大小顺序为( )
    A.eq \f(fa,a)C.eq \f(fb,b)16.已知由sin 2x=2sin xcs x,cs 2x=2cs2x-1,cs 3x=cs(2x+x)可推得三倍角余弦公式cs 3x=4cs3x-3cs x,已知cs 54°=sin 36°,结合三倍角余弦公式和二倍角正弦公式可得sin 18°=________;如图,已知五角星ABCDE是由边长为2的正五边形GHIJK和五个全等的等腰三角形组成的,则eq \(HE,\s\up6(→))·eq \(HG,\s\up6(→))=________.
    相关试卷

    2025年高考数学一轮复习(基础版)课时精讲第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析): 这是一份2025年高考数学一轮复习(基础版)课时精讲第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第4章§44简单的三角恒等变换原卷版doc、2025年高考数学一轮复习基础版课时精讲第4章§44简单的三角恒等变换含解析doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    (新高考)高考数学一轮复习学案+巩固提升练习4.4《简单的三角恒等变换》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+巩固提升练习4.4《简单的三角恒等变换》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》原卷版doc、新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》教师版doc、新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》教师版pdf等4份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    (新高考)高考数学一轮复习学案+分层提升4.4《简单的三角恒等变换》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+分层提升4.4《简单的三角恒等变换》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》原卷版doc、新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》教师版doc、新高考高考数学一轮复习讲义+巩固练习44《简单的三角恒等变换》教师版pdf等4份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习讲义第4章 §4.4 简单的三角恒等变换(2份打包,原卷版+含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map