还剩18页未读,
继续阅读
所属成套资源:高中数学选择性必修一AB卷《单元分层过关检测》含解析答案
成套系列资料,整套一键下载
高中数学选择性必修一AB卷《单元分层过关检测》第3章圆锥曲线的方程单元测试A含解析答案
展开
这是一份高中数学选择性必修一AB卷《单元分层过关检测》第3章圆锥曲线的方程单元测试A含解析答案,共21页。
第三章 圆锥曲线的方程单元测试A学校:___________姓名:___________班级:___________考号:___________一、单选题1.设为椭圆的两个焦点,点在上,若,则( )A.1 B.2 C.4 D.52.2022年神舟接力腾飞,中国空间站全面建成,我们的“太空之家”遨游苍穹.太空中飞船与空间站的对接,需要经过多次变轨.某飞船升空后的初始运行轨道是以地球的中心为一个焦点的椭圆,其远地点(长轴端点中离地面最远的点)距地面,近地点(长轴端点中离地面最近的点)距地面,地球的半径为,则该椭圆的短轴长为( )A. B.C. D.3.设椭圆的离心率分别为.若,则( )A. B. C. D.4.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为( )A. B.C. D.5.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )A. B. C. D.6.抛物线的焦点到直线的距离为,则( )A.1 B.2 C. D.47.已知过抛物线的焦点,且倾斜角为的直线交抛物线于A,B两点,则( )A.32 B. C. D.88.设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )A. B. C. D.二、多选题9.已知抛物线:的焦点为,为上一点,下列说法正确的是( )A.的准线方程为B.直线与相切C.若,则的最小值为D.若,则的周长的最小值为1110.设椭圆的左右焦点为,,P是C上的动点,则下列结论正确的是( ).A.B.P到最小的距离是2C.面积的最大值为6D.P到最大的距离是911.双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )A. B. C. D.三、填空题12.已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为 .13.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为 .14.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为 .四、解答题15.椭圆C的中心在坐标原点O,焦点在x轴上,椭圆C经过点且长轴长为.(1)求椭圆C的标准方程;(2)过点且斜率为1的直线l与椭圆C交于A,B两点,求弦长|AB|.16.已知双曲线与双曲线有相同的渐近线,且经过点M(),(1)求双曲线C的标准方程(2)已知直线与曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值.17.若椭圆过抛物线的焦点,且与双曲线有相同的焦点.(1)求椭圆E的方程;(2)不过原点O的直线与椭圆E交于A、B两点,求面积的最大值以及此时直线l的方程.18.已知抛物线,为坐标原点,焦点在直线上.(1)求抛物线的标准方程;(2)过点作动直线与抛物线交于,两点,直线,分别与圆交于点,两点(异于点),设直线,斜率分别为,.①求证:为定值;②求证:直线恒过定点.19.已知椭圆,定义椭圆上的点的“伴随点”为.(1)求椭圆上的点的“伴随点”的轨迹方程;(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;(3)当,时,直线交椭圆于两点,若点的“伴随点”分别是,且以为直径的圆经过坐标原点,求的面积.参考答案:1.B【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.2.D【分析】根据椭圆的远地点和近地点的距离可得,进而可求得,求得b,可得答案.【详解】由题意得,故,故选:D.3.A【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.【详解】由,得,因此,而,所以.故选:A4.A【分析】根据题意,结合椭圆与双曲线的几何性质,列出方程,求得的值,即可求解.【详解】由椭圆的标准方程为,可得,即,因为双曲线的焦点与椭圆的焦点相同,所以双曲线中,半焦距,又因为双曲线满足,即,又由,即,解得,可得,所以双曲线的方程为.故选:A.5.A【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.6.B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.7.A【分析】由题意可得直线的方程为,联立直线与抛物线的方程得,由韦达定理可得,再根据抛线的定义即可得答案.【详解】解:因为抛物线,所以,,所以直线的方程为,由,得,显然,设则有,所以,由抛物线定义可知.故选:A.8.D【分析】根据点差法分析可得,对于A、B、D:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.【详解】设,则的中点,可得,因为在双曲线上,则,两式相减得,所以.对于选项A: 可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故A错误;对于选项B:可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故B错误;对于选项C:可得,则由双曲线方程可得,则为双曲线的渐近线,所以直线AB与双曲线没有交点,故C错误;对于选项D:,则,联立方程,消去y得,此时,故直线AB与双曲线有交两个交点,故D正确;故选:D.9.BCD【分析】将抛物线方程化为标准式,即可求出焦点坐标与准线方程,从而判断A,联立直线与抛物线方程,消元,由判断B,设点,表示出,根据二次函数的性质判断C,根据抛物线的定义转化求出的周长的最小值,即可判断D.【详解】解:抛物线:,即,所以焦点坐标为,准线方程为,故A错误;由,即,解得,所以直线与相切,故B正确;设点,所以,所以,故C正确;如图过点作准线,交于点,,,所以,当且仅当、、三点共线时取等号,故D正确;故选:BCD10.AD【分析】根据椭圆的定义和性质逐项运算分析即可.【详解】由椭圆方程可得:,则,对A:根据椭圆的定义可得,A正确;对B:根据椭圆性质可知当P是椭圆的左顶点时,P到的距离最小,最小值为,B错误;对C:根据椭圆性质可知当P是椭圆的上顶点时,的面积最大,最大值为,C错误;对D:根据椭圆性质可知当P是椭圆的右顶点时,P到的距离最大,最小值为,D正确.故选:AD.11.AC【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.【详解】[方法一]:几何法,双曲线定义的应用情况一 M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,所以,因为,所以在双曲线的左支,,, ,设,由即,则,选A情况二若M、N在双曲线的两支,因为,所以在双曲线的右支,所以,, ,设,由,即,则,所以,即,所以双曲线的离心率选C[方法二]:答案回代法特值双曲线,过且与圆相切的一条直线为,两交点都在左支,,,则,特值双曲线,过且与圆相切的一条直线为,两交点在左右两支,在右支,,,则,[方法三]:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,若分别在左右支,因为,且,所以在双曲线的右支,又,,,设,,在中,有,故即,所以,而,,,故,代入整理得到,即,所以双曲线的离心率若均在左支上,同理有,其中为钝角,故,故即,代入,,,整理得到:,故,故,故选:AC.12.【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.【详解】抛物线: ()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,因为,所以,,所以的准线方程为故答案为:.【点睛】利用向量数量积处理垂直关系是本题关键.13.【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以, ,即四边形面积等于.故答案为:.14.【解析】作出图形,设双曲线的右焦点为,根据双曲线的定义可得,可得出,利用、、三点共线时取得最小值即可得解.【详解】对于双曲线,则,,,如下图所示:设双曲线的右焦点为,则,由双曲线的定义可得,则,所以,,当且仅当、、三点共线时,等号成立.因此,的最小值为.故答案为:.【点睛】关键点点睛:利用双曲线的定义求解线段和的最小值,有如下方法:(1)求解椭圆、双曲线有关的线段长度和、差的最值,都可以通过相应的圆锥曲线的定义分析问题;(2)圆外一点到圆上的点的距离的最值,可通过连接圆外的点与圆心来分析求解.15.(1)(2)【分析】(1)根据椭圆的长轴长及所经过点直接求出,得出椭圆C的标准方程.(2)直线l与椭圆方程联立,得出韦达定理,根据弦长公式得出结果.【详解】(1)由题意设椭圆C的方程为,因为椭圆经过点且长轴长为,所以,所以椭圆C的标准方程为.(2)由已知设直线l的方程为,设,.将直线代入,得,所以,,.16.(1)(2)【分析】(1)据共渐近线设双曲线的方程,然后代入点,计算,即可得出答案.(2)联立直线与双曲线的方程,得关于的一元二次方程,写出韦达定理,然后表示出的中点坐标,代入圆的方程,计算即可得出答案.【详解】(1)设双曲线的方程为,代入,,得,解得,所以双曲线的方程为.(2)由,得,设,,,,则中点坐标为,,由韦达定理可得,所以,所以中点坐标为,因为点在圆上,所以,解得.17.(1)(2)面积的最大值为,此时直线的方程为【分析】(1)根据抛物线和双曲线的性质结合椭圆的的关系求解;(2)利用韦达定理求出弦长,再利用点到直线距离公式为三角形的高即可求解.【详解】(1)抛物线的焦点为,所以,因为双曲线的焦点坐标为,所以则,所以椭圆E的方程为.(2)设,联立可得,因为直线与椭圆E交于A、B两点,所以解得,由韦达定理可得,由弦长公式可得,点到直线的距离为,所以当且仅当即时取得等号,所以面积的最大值为,此时直线的方程为.18.(1)(2)①证明见解析;②证明见解析【分析】(1)先求出抛物线的焦点坐标,进而得到,可得,从而求解;(2)①设直线方程为,,,联立方程组,结合韦达定理可得,结合可得,进而求证;②设直线方程为,,,联立方程组,结合韦达定理可得,,再结合即可得证.【详解】(1)易知直线与x轴交于,即焦点坐标为,所以,,则抛物线方程为.(2)①设直线方程为,,,联立方程组,得,所以,又,所以,即,则.②设直线方程为,,联立方程组,得,所以,,.整理得,,所以直线过定点.19.(1)(2)(3)【分析】(1)根据“伴随点”的定义,结合点在椭圆上求解即可;(2)根据题意,结合(1)得,进而得,再根据数量积的坐标表示,结合二次函数求解即可;(3)设,,则,,进而根据得,再联立椭圆和直线的方程并结合韦达定理得,最后求弦长与点到直线的距离并求面积即可.【详解】(1)解:设.所以,根据“伴随点”的定义,有,则,又因为,所以,即.所以,椭圆上的点的“伴随点”的轨迹方程为.(2)解:由(1)知,椭圆上的点的“伴随点”的轨迹方程为,因为椭圆上的点的“伴随点”为,所以,根据“伴随点”的定义与(1)中结论,有,解得,因为点在椭圆上,所以,所以,,且,所以.因为,,所以,所以的取值范围是.(3)解:由题意,得椭圆的方程为.设,,则,.联立椭圆和直线的方程,得所以.由题意,得,所以,.①因为为直径的圆经过坐标原点,所以,即,所以.②将①代入②,化简,得.所以,,所以.又因为点到直线的距离,所以.
第三章 圆锥曲线的方程单元测试A学校:___________姓名:___________班级:___________考号:___________一、单选题1.设为椭圆的两个焦点,点在上,若,则( )A.1 B.2 C.4 D.52.2022年神舟接力腾飞,中国空间站全面建成,我们的“太空之家”遨游苍穹.太空中飞船与空间站的对接,需要经过多次变轨.某飞船升空后的初始运行轨道是以地球的中心为一个焦点的椭圆,其远地点(长轴端点中离地面最远的点)距地面,近地点(长轴端点中离地面最近的点)距地面,地球的半径为,则该椭圆的短轴长为( )A. B.C. D.3.设椭圆的离心率分别为.若,则( )A. B. C. D.4.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为( )A. B.C. D.5.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )A. B. C. D.6.抛物线的焦点到直线的距离为,则( )A.1 B.2 C. D.47.已知过抛物线的焦点,且倾斜角为的直线交抛物线于A,B两点,则( )A.32 B. C. D.88.设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )A. B. C. D.二、多选题9.已知抛物线:的焦点为,为上一点,下列说法正确的是( )A.的准线方程为B.直线与相切C.若,则的最小值为D.若,则的周长的最小值为1110.设椭圆的左右焦点为,,P是C上的动点,则下列结论正确的是( ).A.B.P到最小的距离是2C.面积的最大值为6D.P到最大的距离是911.双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )A. B. C. D.三、填空题12.已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为 .13.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为 .14.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为 .四、解答题15.椭圆C的中心在坐标原点O,焦点在x轴上,椭圆C经过点且长轴长为.(1)求椭圆C的标准方程;(2)过点且斜率为1的直线l与椭圆C交于A,B两点,求弦长|AB|.16.已知双曲线与双曲线有相同的渐近线,且经过点M(),(1)求双曲线C的标准方程(2)已知直线与曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值.17.若椭圆过抛物线的焦点,且与双曲线有相同的焦点.(1)求椭圆E的方程;(2)不过原点O的直线与椭圆E交于A、B两点,求面积的最大值以及此时直线l的方程.18.已知抛物线,为坐标原点,焦点在直线上.(1)求抛物线的标准方程;(2)过点作动直线与抛物线交于,两点,直线,分别与圆交于点,两点(异于点),设直线,斜率分别为,.①求证:为定值;②求证:直线恒过定点.19.已知椭圆,定义椭圆上的点的“伴随点”为.(1)求椭圆上的点的“伴随点”的轨迹方程;(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;(3)当,时,直线交椭圆于两点,若点的“伴随点”分别是,且以为直径的圆经过坐标原点,求的面积.参考答案:1.B【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.2.D【分析】根据椭圆的远地点和近地点的距离可得,进而可求得,求得b,可得答案.【详解】由题意得,故,故选:D.3.A【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.【详解】由,得,因此,而,所以.故选:A4.A【分析】根据题意,结合椭圆与双曲线的几何性质,列出方程,求得的值,即可求解.【详解】由椭圆的标准方程为,可得,即,因为双曲线的焦点与椭圆的焦点相同,所以双曲线中,半焦距,又因为双曲线满足,即,又由,即,解得,可得,所以双曲线的方程为.故选:A.5.A【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.6.B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.7.A【分析】由题意可得直线的方程为,联立直线与抛物线的方程得,由韦达定理可得,再根据抛线的定义即可得答案.【详解】解:因为抛物线,所以,,所以直线的方程为,由,得,显然,设则有,所以,由抛物线定义可知.故选:A.8.D【分析】根据点差法分析可得,对于A、B、D:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.【详解】设,则的中点,可得,因为在双曲线上,则,两式相减得,所以.对于选项A: 可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故A错误;对于选项B:可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故B错误;对于选项C:可得,则由双曲线方程可得,则为双曲线的渐近线,所以直线AB与双曲线没有交点,故C错误;对于选项D:,则,联立方程,消去y得,此时,故直线AB与双曲线有交两个交点,故D正确;故选:D.9.BCD【分析】将抛物线方程化为标准式,即可求出焦点坐标与准线方程,从而判断A,联立直线与抛物线方程,消元,由判断B,设点,表示出,根据二次函数的性质判断C,根据抛物线的定义转化求出的周长的最小值,即可判断D.【详解】解:抛物线:,即,所以焦点坐标为,准线方程为,故A错误;由,即,解得,所以直线与相切,故B正确;设点,所以,所以,故C正确;如图过点作准线,交于点,,,所以,当且仅当、、三点共线时取等号,故D正确;故选:BCD10.AD【分析】根据椭圆的定义和性质逐项运算分析即可.【详解】由椭圆方程可得:,则,对A:根据椭圆的定义可得,A正确;对B:根据椭圆性质可知当P是椭圆的左顶点时,P到的距离最小,最小值为,B错误;对C:根据椭圆性质可知当P是椭圆的上顶点时,的面积最大,最大值为,C错误;对D:根据椭圆性质可知当P是椭圆的右顶点时,P到的距离最大,最小值为,D正确.故选:AD.11.AC【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.【详解】[方法一]:几何法,双曲线定义的应用情况一 M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,所以,因为,所以在双曲线的左支,,, ,设,由即,则,选A情况二若M、N在双曲线的两支,因为,所以在双曲线的右支,所以,, ,设,由,即,则,所以,即,所以双曲线的离心率选C[方法二]:答案回代法特值双曲线,过且与圆相切的一条直线为,两交点都在左支,,,则,特值双曲线,过且与圆相切的一条直线为,两交点在左右两支,在右支,,,则,[方法三]:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,若分别在左右支,因为,且,所以在双曲线的右支,又,,,设,,在中,有,故即,所以,而,,,故,代入整理得到,即,所以双曲线的离心率若均在左支上,同理有,其中为钝角,故,故即,代入,,,整理得到:,故,故,故选:AC.12.【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.【详解】抛物线: ()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,因为,所以,,所以的准线方程为故答案为:.【点睛】利用向量数量积处理垂直关系是本题关键.13.【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以, ,即四边形面积等于.故答案为:.14.【解析】作出图形,设双曲线的右焦点为,根据双曲线的定义可得,可得出,利用、、三点共线时取得最小值即可得解.【详解】对于双曲线,则,,,如下图所示:设双曲线的右焦点为,则,由双曲线的定义可得,则,所以,,当且仅当、、三点共线时,等号成立.因此,的最小值为.故答案为:.【点睛】关键点点睛:利用双曲线的定义求解线段和的最小值,有如下方法:(1)求解椭圆、双曲线有关的线段长度和、差的最值,都可以通过相应的圆锥曲线的定义分析问题;(2)圆外一点到圆上的点的距离的最值,可通过连接圆外的点与圆心来分析求解.15.(1)(2)【分析】(1)根据椭圆的长轴长及所经过点直接求出,得出椭圆C的标准方程.(2)直线l与椭圆方程联立,得出韦达定理,根据弦长公式得出结果.【详解】(1)由题意设椭圆C的方程为,因为椭圆经过点且长轴长为,所以,所以椭圆C的标准方程为.(2)由已知设直线l的方程为,设,.将直线代入,得,所以,,.16.(1)(2)【分析】(1)据共渐近线设双曲线的方程,然后代入点,计算,即可得出答案.(2)联立直线与双曲线的方程,得关于的一元二次方程,写出韦达定理,然后表示出的中点坐标,代入圆的方程,计算即可得出答案.【详解】(1)设双曲线的方程为,代入,,得,解得,所以双曲线的方程为.(2)由,得,设,,,,则中点坐标为,,由韦达定理可得,所以,所以中点坐标为,因为点在圆上,所以,解得.17.(1)(2)面积的最大值为,此时直线的方程为【分析】(1)根据抛物线和双曲线的性质结合椭圆的的关系求解;(2)利用韦达定理求出弦长,再利用点到直线距离公式为三角形的高即可求解.【详解】(1)抛物线的焦点为,所以,因为双曲线的焦点坐标为,所以则,所以椭圆E的方程为.(2)设,联立可得,因为直线与椭圆E交于A、B两点,所以解得,由韦达定理可得,由弦长公式可得,点到直线的距离为,所以当且仅当即时取得等号,所以面积的最大值为,此时直线的方程为.18.(1)(2)①证明见解析;②证明见解析【分析】(1)先求出抛物线的焦点坐标,进而得到,可得,从而求解;(2)①设直线方程为,,,联立方程组,结合韦达定理可得,结合可得,进而求证;②设直线方程为,,,联立方程组,结合韦达定理可得,,再结合即可得证.【详解】(1)易知直线与x轴交于,即焦点坐标为,所以,,则抛物线方程为.(2)①设直线方程为,,,联立方程组,得,所以,又,所以,即,则.②设直线方程为,,联立方程组,得,所以,,.整理得,,所以直线过定点.19.(1)(2)(3)【分析】(1)根据“伴随点”的定义,结合点在椭圆上求解即可;(2)根据题意,结合(1)得,进而得,再根据数量积的坐标表示,结合二次函数求解即可;(3)设,,则,,进而根据得,再联立椭圆和直线的方程并结合韦达定理得,最后求弦长与点到直线的距离并求面积即可.【详解】(1)解:设.所以,根据“伴随点”的定义,有,则,又因为,所以,即.所以,椭圆上的点的“伴随点”的轨迹方程为.(2)解:由(1)知,椭圆上的点的“伴随点”的轨迹方程为,因为椭圆上的点的“伴随点”为,所以,根据“伴随点”的定义与(1)中结论,有,解得,因为点在椭圆上,所以,所以,,且,所以.因为,,所以,所以的取值范围是.(3)解:由题意,得椭圆的方程为.设,,则,.联立椭圆和直线的方程,得所以.由题意,得,所以,.①因为为直径的圆经过坐标原点,所以,即,所以.②将①代入②,化简,得.所以,,所以.又因为点到直线的距离,所以.
相关资料
更多