![重庆实验外国语2022-2023学年数学九年级第一学期期末综合测试试题含解析01](http://img-preview.51jiaoxi.com/2/3/16004507/0-1721713675889/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![重庆实验外国语2022-2023学年数学九年级第一学期期末综合测试试题含解析02](http://img-preview.51jiaoxi.com/2/3/16004507/0-1721713675980/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![重庆实验外国语2022-2023学年数学九年级第一学期期末综合测试试题含解析03](http://img-preview.51jiaoxi.com/2/3/16004507/0-1721713676011/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
重庆实验外国语2022-2023学年数学九年级第一学期期末综合测试试题含解析
展开1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.某水库大坝的横断面是梯形,坝内一斜坡的坡度,则这个斜坡坡角为( )
A.30°B.45°C.60°D.90°
2.如图,AG:GD=4:1,BD:DC=2:3,则 AE:EC 的值是( )
A.3:2B.4:3C.6:5D.8:5
3.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是( )
A.众数是1B.平均数是1C.中位数是80D.极差是15
4.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是( )
A.B.aC.D.
5.将二次函数化成的形式为( )
A.B.
C.D.
6.如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是 ( )
A.B.C.D.
7.若点P(﹣m,﹣3)在第四象限,则m满足( )
A.m>3B.0<m≤3C.m<0D.m<0或m>3
8.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有( )
① ② ③ ④∽
A.1个B.2个C.3个D.4个
9.抛物线上部分点的横坐标、纵坐标的对应值如下表:
容易看出,是它与轴的一个交点,那么它与轴的另一个交点的坐标为( )
A.B.C.D.
10.如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(1.0)B.(1.0)或(﹣1.0)
C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)
11.如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是( )
A.B.C.D.
12.如图,立体图形的俯视图是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.若,则的值是______.
14.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.
15.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是______ .
16.如图,在中,,是边上的中线,,则的长是__________.
17.点向左平移两个单位后恰好位于双曲线上,则__________.
18.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.
三、解答题(共78分)
19.(8分)如图,已知一次函数与反比例函数的图象交于、两点.
(1)求一次函数与反比例函数的表达式;
(2)求的面积;
20.(8分)在下列的网格中,横、纵坐标均为整数的点叫做格点,例如正方形的顶点,都是格点.要求在下列问题中仅用无刻度的直尺作图.
(1)画出格点,连(或延长)交边于,使,写出点的坐标.
(2)画出格点,连(或延长)交边于,使,则满足条件的格点有 个.
21.(8分)如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.
(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.
22.(10分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:
(1)根据上图填写下表:
(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.
23.(10分)如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.
(1)求BC边上的高;
(2)求正方形EFGH的边长.
24.(10分)如图,半圆的直径,将半圆绕点顺时针旋转得到半圆,半圆与交于点.
(1)求的长;
(2)求图中阴影部分的面积.(结果保留)
25.(12分)用你喜欢的方法解方程
(1)x2﹣6x﹣6=0
(2)2x2﹣x﹣15=0
26.如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.
(1)在图1中,作AD的中点P;
(2)在图2中,作AB的中点Q.
参考答案
一、选择题(每题4分,共48分)
1、A
【分析】根据坡度可以求得该坡角的正切值,根据正切值即可求得坡角的角度.
【详解】∵坡度为,
∴,
∵,且α为锐角,
∴.
故选:A.
【点睛】
本题考查了坡度的定义,考查了特殊角的三角函数值,考查了三角函数值在直角三角形中的应用.
2、D
【解析】过点 D 作 DF∥CA 交 BE 于 F,如图,利用平行线分线段成比例定理,由 DF∥CE 得到==,则 CE=DF,由 DF∥AE 得到==,则 AE=4DF, 然后计算的值.
【详解】如图,过点 D作 DF∥CA 交 BE于 F,
∵DF∥CE,
∴=,
而 BD:DC=2:3,BC=BD +CD,
∴=,则 CE=DF,
∵DF∥AE,
∴=,
∵AG:GD=4:1,
∴=,则 AE=4DF,
∴=,
故选D.
【点睛】
本题考查了平行线分线段成比例、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,熟练掌握相关知识是解题的关键.
3、C
【分析】本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和极差的定义可分别求出.
【详解】解:这组数据中1出现了3次,出现的次数最多,所以这组数据的众数位1;
由平均数公式求得这组数据的平均数位1,极差为95-80=15;
将这组数据按从大到校的顺序排列,第3,4个数是1,故中位数为1.
所以选项C错误.
故选C.
【点睛】
本题考查了统计学中的平均数,众数,中位数与极差的定义.解答这类题学生常常对中位数的计算方法掌握不好而错选.
4、A
【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.
【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,
∴a>0,b<0,
∴b−a<0,
∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,
故选A.
【点睛】
本题考查点的坐标, 二次根式的性质与化简,解题的关键是根据象限特征判断正负.
5、C
【分析】利用配方法即可将二次函数转化为顶点式.
【详解】
故选:C.
【点睛】
本题主要考查二次函数的顶点式,掌握配方法是解题的关键.
6、C
【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.
【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,
故选择C.
【点睛】
本题考查了旋转的性质.
7、C
【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.
【详解】解:根据第四象限的点的横坐标是正数,可得﹣m>1,解得m<1.
故选:C.
【点睛】
本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.
8、B
【分析】由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,进而又可得出△ABE∽△AEF,即可得出题中结论.
【详解】∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,
∴△BAE∽△CEF,
∴
∵是的中点,
∴BE=CE
∴CE2=AB•CF,∴②正确;
∵BE=CE=BC,
∴CF=BE=CD,故③错误;
∵
∴∠BAE≠30°,故①错误;
设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,
∴AE=2a,EF=a,AF=5a,
∴
∴
∴△ABE∽△AEF,故④正确.
∴②与④正确.
∴正确结论的个数有2个.
故选:B.
【点睛】
此题考查了相似三角形的判定与性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.
9、C
【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可.
【详解】∵抛物线经过(0,6)、(1,6)两点,
∴对称轴x==;
点(−2,0)关于对称轴对称点为(3,0),
因此它与x轴的另一个交点的坐标为(3,0).
故选C.
【点睛】
本题考查了二次函数的对称性,解题的关键是求出其对称轴.
10、D
【解析】试题分析:联立直线与反比例解析式得:,
消去y得到:x2=1,解得:x=1或﹣1.∴y=2或﹣2.
∴A(1,2),即AB=2,OB=1,
根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:
根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,
根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).
故选D.
11、A
【分析】由平行四边形的性质可知:,,再证明即可证明四边形是平行四边形.
【详解】∵四边形是平行四边形,
∴,,
∵对角线上的两点、满足,
∴,即,
∴四边形是平行四边形,
∵,
∴,
∴四边形是矩形.
故选A.
【点睛】
本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.
12、C
【解析】找到从上面看所得到的图形即可.
【详解】A、是该几何体的主视图;
B、不是该几何体的三视图;
C、是该几何体的俯视图;
D、是该几何体的左视图.
故选C.
【点睛】
考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.
二、填空题(每题4分,共24分)
13、
【分析】根据合比性质:,可得答案.
【详解】由合比性质,得,
故答案为:.
【点睛】
本题考查了比例的性质,利用合比性质是解题关键.
14、10.5
【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.
【详解】解:由题可知,BE⊥AC,DC⊥AC
∵BE//DC,
∴△AEB∽△ADC,
∴,
即:,
∴CD=10.5(m).
故答案为10.5.
【点睛】
本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.
15、
【分析】首先确定所求的阴影小正方形可能的位置总数目,除以剩余空白部分的正方形的面积个数即为所求的概率.
【详解】解:从阴影下边的四个小正方形中任选一个,就可以构成正方体的表面展开图,
∴能构成这个正方体的表面展开图的概率是.
故答案为:.
【点睛】
本题将概率的求解设置于正方体的表面展开图中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比;“一,四,一”组合类型的6个正方形能组成正方体.
16、10
【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.
【详解】解:∵在中,,是边上的中线
∴
∴AB=2CD=10
故答案为:10
【点睛】
本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.
17、
【分析】首先求出点P平移后的坐标,然后代入双曲线即可得解.
【详解】点向左平移两个单位后的坐标为,代入双曲线,得
∴
故答案为-1.
【点睛】
此题主要考查坐标的平移以及双曲线的性质,熟练掌握,即可解题.
18、55°
【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°- 35°=55°.
【详解】如图,∵CD为斜边AB的中线
∴CD=AD
∵∠A=35°
∴∠A=∠ACD=35°
∵∠ACD+∠BCD=90°
则∠BCD=90°- 35°=55°
故填:55°.
【点睛】
此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.
三、解答题(共78分)
19、(1)y=;(2)12
【分析】(1)将点A分别代入一次函数与反比例函数,即可求出相应的解析式;
(2)如图,将△AOB的面积转化为△AOC的面积和△BOC的面积和即可求出.
【详解】(1)解:y=x-b过A(-5,-1)
-1=-5-b;b=-4
y=x-+4
y=过A(-5,-1),
k=-5×(-1)=5
y=
(2)如下图,直线与y轴交于点C,连接AO,BO
∵直线解析式为:y=x+4
∴C(0,4),CO=4
由图形可知,
∴.
【点睛】
本题考查一次函数与反比例函数的综合,求△AOB面积的关键是将△AOB的面积转化为△AOC和△BOC的面积和来求解.
20、(1)或或;(2)3个
【分析】(1)根据题意可得E为BC中点,找到D关于直线BC的对称点M3,再连接AM3,即可得到3个格点;
(2)根据题意,延长BC,由,得CF=3DF,故使CN3=3AD,连接AN3,即可得到格点.
【详解】(1)如图,或或
(2)如图,N的个数为3个,
故答案为:3.
【点睛】
此题主要考查图形与坐标,解题的关键是熟知对称性与相似三角形的应用.
21、(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=.
【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;
(2)成立,同(1)的证明方法即可得答案;
(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角形的性质得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.
【详解】(1)△FAG等腰三角形;理由如下:
∵BC为直径,
∴∠BAC=90°,
∴∠ABE+∠AGB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵,
∴∠ABE=∠ACD,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
(2)成立,理由如下:
∵BC为直径,
∴∠BAC=90°,
∴∠ABE+∠AGB=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵,
∴∠ABE=∠ACD,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,
∴∠BAD=∠ABG,
∴AF=BF,
∵AF=FG,
∴BF=GF,即F为BG的中点,
∵△BAG为直角三角形,
∴AF=BF=BG=13,
∵DF=5,
∴AD=AF﹣DF=13﹣5=8,
∴在Rt△BDF中,BD==12,
∴在Rt△BDA中,AB==4,
∵∠ABC=∠ABD,∠BAC=∠ADB=90°,
∴△ABC∽△DBA,
∴=,
∴=,
∴BC=,
∴⊙O的直径BC=.
【点睛】
本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.
22、(1);(2)答案见解析
【分析】(1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可;
(2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.
【详解】解:(1)甲的众数为:,
方差为:
,
乙的中位数是:8;
故答案为;
(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;
从中位数看,甲班的中位数大,所以甲班的成绩较好;
从众数看,乙班的众数大,所以乙班的成绩较好;
从方差看,甲班的方差小,所以甲班的成绩更稳定.
【点睛】
理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.
23、(1)12cm;(2)
【分析】(1)由勾股定理求出BC=25cm,再由三角形面积即可得出答案;
(2)设正方形边长为x,证出△AEH∽△ABC,得出比例式,进而得出答案.
【详解】解:(1)作AD⊥BC于D,交EH于O,如图所示:
∵在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,
∴BC==25(cm),
∵BC×AD=AB×AC,
∴AD===12(cm);
即BC边上的高为12cm;
(2)设正方形EFGH的边长为xcm,
∵四边形EFGH是正方形,
∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C,
∴△AEH∽△ABC.
∴=,即=,
解得:x=,
即正方形EFGH的边长为cm.
【点睛】
本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是利用相似三角形的相似比对于高的比,学会用方程的思想解决问题,属于中考常考题型.
24、(1)AP=;(2).
【分析】(1)先根据题意判断出△O′PB是等腰直角三角形,由锐角三角函数的定义求出PB的长,进而可得出AP的长;
(2)由题意根据,直接进行分析计算即可.
【详解】解:(1)连接,
,,
是等腰直角三角形,
,
.
(2)阴影部分的面积为.
【点睛】
本题考查的是扇形面积的计算及图形旋转的性质,解答此题的关键是根据旋转的性质进行分析作答.
25、(1)x1=1+,x2=1﹣;(2)x1=﹣2.5,x2=1
【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;
(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】x2﹣6x﹣6=0,
∵a=1,b=-6,c=-6,
∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,
x=
x1=1+,x2=1﹣;
(2)2x2﹣x﹣15=0,
(2x+5)(x﹣1)=0,
2x+5=0,x﹣1=0,
x1=﹣2.5,x2=1.
【点睛】
此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.
26、 (1)画图见解析;(2)画图见解析.
【解析】(1)先连接矩形的对角线交于点O,再连接MO并延长,交AD于P,则点P即为AD的中点;
(2)先运用(1)中的方法,画出AD的中点P,再连接BP,交AC于点K,则点E,再连接DK并延长,交AB于点Q,则点Q即为AB的中点.
【详解】(1)如图点P即为所求;
(2)如图点Q即为所求;
【点睛】
本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.
…
-3
-2
-1
0
1
…
…
-6
0
4
6
6
…
平均数
中位数
众数
方差
甲班
8.5
8.5
乙班
8.5
10
1.6
重庆涪陵区2022-2023学年数学九年级第一学期期末综合测试模拟试题含解析: 这是一份重庆涪陵区2022-2023学年数学九年级第一学期期末综合测试模拟试题含解析,共19页。试卷主要包含了已知⊙O的半径为4cm,某商务酒店客房有间供客户居住,下列运算中,结果正确的是等内容,欢迎下载使用。
2023-2024学年重庆实验外国语学校九年级(下)期中数学试卷(含解析): 这是一份2023-2024学年重庆实验外国语学校九年级(下)期中数学试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题,八年级学生,分别从七等内容,欢迎下载使用。
重庆实验外国语学校2023-2024学年九年级数学第一学期期末统考模拟试题含答案: 这是一份重庆实验外国语学校2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共8页。