重庆九龙坡区2022-2023学年数学九上期末质量跟踪监视模拟试题含解析
展开1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC的度数为( )
A.60°B.45°C.75°D.90°
2.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为( )
A.2B.4C.8D.11
3.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<1;②方程ax2+bx+c=1的根是x1=﹣1,x2=3;③a+b+c<1;④当x>1时,y随x的增大而减小;⑤2a﹣b=1;⑥b2﹣4ac>1.下列结论一定成立的是( )
A.①②④⑥B.①②③⑥C.②③④⑤⑥D.①②③④
4.在平面直角坐标系中,点,,过第四象限内一动点作轴的垂线,垂足为,且,点、分别在线段和轴上运动,则的最小值是( )
A.B.C.D.
5.如图,用一个半径为5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )
A.π cmB.2π cmC.3π cmD.5π cm
6.在反比例函数的图像上有三点、、,若,而,则下列各式正确的是( )
A.B.
C.D.
7.下列函数的图象,不经过原点的是( )
A.B.y=2x2C.y=(x﹣1)2﹣1D.
8.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为( )
A.8B.4C.1D.5
9.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )
A.B.C.D.
10.已知一块圆心角为的扇形纸板,用它做一个圆锥形的圣诞帽(接缝忽略不计)圆锥的底面圆的直径是,则这块扇形纸板的半径是( )
A.B.C.D.
11.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“治”相对的面上的汉字是( )
A.全B.面C.依D.法
12.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为( )
A.2B.3C.4D.6
二、填空题(每题4分,共24分)
13.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.
14.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.
15.抛物线y=3(x+2)2+5的顶点坐标是_____.
16.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF 绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.
17.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)
18.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 .
三、解答题(共78分)
19.(8分)解下列一元二次方程.
(1)x2+x-6=1;
(2)2(x-1)2-8=1.
20.(8分)已知点M(2,a)在反比例函数y=(k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.
21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O 的半径.
22.(10分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.
23.(10分)如图,一次函数与反比例函数的图象交于、两点,与坐标轴分别交于、两点.
(1)求一次函数的解析式;
(2)根据图象直接写出中的取值范围;
(3)求的面积.
24.(10分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
25.(12分)如图,在中,,是绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.
求旋转角的大小;
若,,求BE的长.
26.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.
(1)甲运动后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】根据三角形的外角的性质计算,得到答案.
【详解】∵∠GFA=90°,∠A=45°,
∴∠CGD=45°,
∴∠BDC=∠CGD+∠C=75°,
故选:B.
【点睛】
本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
2、C
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.
【详解】解:依题意有:=1.2,
解得:n=2.
故选:C.
【点睛】
此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.
3、B
【解析】根据二次函数图象和性质可以判断各个小题中的结论是否成立,从而可以解答本题.
根据图像分析,抛物线向上开口,a>1;抛物线与y轴交点在y轴的负半轴,c<1;坐标轴在右边,根据左同右异,可知b与a异号,b<1;与坐标轴有两个交点,那么△>1,根据这些信息再结合函数性质判断即可.
【详解】解:
①由图象可得,a>1,c<1,∴ac<1,故①正确,
②方程当y=1时,代入y=ax2+bx+c,求得根是x1=-1,x2=3,故②正确,
③当x=1时,y=a+b+c<1,故③正确,
④∵该抛物线的对称轴是直线x=
∴当x>1时,y随x的增大而增大,故④错误,
⑤则2a=-b,那么2a+b=1,故⑤错误,
⑥∵抛物线与x轴两个交点,∴b2-4ac>1,故⑥正确,
故正确的为. ①②③⑥选:B.
【点睛】
本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
4、B
【分析】先求出直线AB的解析式,再根据已知条件求出点C的运动轨迹,由一次函数的图像及性质可知:点C的运动轨迹和直线AB平行,过点C作CE⊥AB交x轴于P,交AB于E,过点M(0,-3)作MN⊥AB于N根据垂线段最短和平行线之间的距离处处相等,可得此时CE即为的最小值,且MN=CE,然后利用锐角三角函数求MN即可求出CE.
【详解】解:设直线AB的解析式为y=ax+b(a≠0)
将点,代入解析式,得
解得:
∴直线AB的解析式为
设C点坐标为(x,y)
∴CD=x,OD=-y
∵
∴
整理可得:,即点C的运动轨迹为直线的一部分
由一次函数的性质可知:直线和直线平行,
过点C作CE⊥AB交x轴于P,交AB于E,过点M(0,-3)作MN⊥AB于N根据垂线段最短和平行线之间的距离处处相等,可得此时CE即为的最小值,且MN=CE,如图所示
在Rt△AOB中,AB=,sin∠BAO=
在Rt△AMN中,AM=6,sin∠MAN=
∴CE=MN=,即的最小值是.
故选:B.
【点睛】
此题考查的是一次函数的图像及性质、动点问题和解直角三角形,掌握用待定系数法求一次函数的解析式、一次函数的图像及性质、垂线段最短和平行线之间的距离处处相等是解决此题的关键.
5、C
【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.
考点:旋转的性质.
6、A
【分析】首先判断反比例函数的比例系数为负数,可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点(x1,y1)和(x1,y1)的纵坐标的大小即可.
【详解】∵反比例函数的比例系数为-1<0,
∴图象的两个分支在第二、四象限;
∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点(x1,y1)、(x1,y1)在第四象限,点(x3,y3)在第二象限,
∴y3最大,
∵x1>x1,y随x的增大而增大,
∴y1>y1,
∴y3>y1>y1.
故选A.
【点睛】
考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的1个分支在第二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.
7、D
【分析】根据函数图象上的点的坐标特征可以知道,经过原点的函数图象,点(0,0)一定在函数的解析式上;反之,点(0,0)一定不在函数的解析式上.
【详解】解:A、当x=0时,y=0,即该函数图象一定经过原点(0,0).故本选项错误;
B、当x=0时,y=0,即该函数图象一定经过原点(0,0).故本选项错误;
C、当x=0时,y=0,即该函数图象一定经过原点(0,0).故本选项错误;
D、当x=0时,原方程无解,即该函数图象一定不经过原点(0,0).故本选项正确.
故选:D.
【点睛】
本题考查了函数的图象,熟悉正比例函数,二次函数和反比例函数图象的特点是解题关键.
8、C
【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.
【详解】解:连接DO
∵PD与⊙O相切于点D,
∴∠PDO=90°,
∵BC⊥PC,
∴∠C=90°,
∴∠PDO=∠C,
∴DO//BC,
∴△PDO∽△PCB,
∴,
设PA=x,则,
解得:x=1,
∴PA=1.
故答案为C.
【点睛】
本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.
9、A
【解析】直接得出2的个数,再利用概率公式求出答案.
【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
∴朝上一面的数字是2的概率为:
故选A.
【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
10、B
【分析】利用底面周长=展开图的弧长可得
【详解】设这个扇形铁皮的半径为rcm,由题意得
解得r=1.
故这个扇形铁皮的半径为1cm,
故选:B.
【点睛】
本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
11、C
【分析】首先将展开图折叠,即可得出与汉字“治”相对的面上的汉字.
【详解】由题意,得与汉字“治”相对的面上的汉字是“依”,
故答案为C.
【点睛】
此题主要考查对正方体展开图的认识,熟练掌握,即可解题.
12、D
【分析】先求CD长度,再求点B坐标,再求函数解析式,可求得面积.
【详解】因为,BD=3,S△BCD==3,
所以,,
解得,CD=2,
因为,C(2,0)
所以,OD=4,
所以,B(4,3)
把B(4,3)代入y=,得k=12,
所以,y=
所以,S△AOC=
故选D
【点睛】
本题考核知识点:反比例函数. 解题关键点:熟记反比例函数性质.
二、填空题(每题4分,共24分)
13、
【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.
【详解】画树状图得:
∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.
∴出现3次正面朝上的概率是
故答案为.
点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
14、
【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.
【详解】连接AC,
由网格特点和正方形的性质可知,∠BAC=90°,
根据勾股定理得,AC=,AB=2,
则tan∠ABC=,
故答案为:.
【点睛】
本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
15、(﹣2,5)
【分析】已知抛物线的顶点式,可直接写出顶点坐标.
【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).
故答案为:(﹣2,5).
【点睛】
本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.
16、
【分析】结合已知条件,作出辅助线,通过全等得出ME=GN,且随着点F的移动,ME的长度不变,从而确定当点N与点D重合时,使线段DG最小.
【详解】解:如图所示,过点E做EM⊥AB交BA延长线于点M,过点G作GN⊥AD交AD于点N,
∴∠EMF=∠GNE=90°
∵四边形ABCD是平行四边形,BC=12
∴AD∥BC,AD=BC=12,
∴∠BAD=120°,
∴∠AFE+∠AEF=60°
又∵EG为EF逆时针旋转120°所得,
∴∠FEG=120°,EF=EG,
∴∠AEF+∠GEN=60°,
∴∠AFE=∠GEN,
∴在△EMF与△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,
∴△EMF≌△GNE(AAS)
∴ME=GN
又∵∠EAM=∠B=60°,AE=4,
∴∠AEM=30°,,,
∴,
∴当点N与点D重合时,使线段DG最小,如图所示,此时,
故答案为:.
【点睛】
本题考查了平行四边形的性质、旋转的性质、全等三角形的构造、几何中的动点问题,解题的关键是作出辅助线,得到全等三角形,并发现当点N与点D重合时,使线段DG最小.
17、(答案不唯一)
【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.
【详解】解:设道路的宽为xm,依题意有
(50-x)(39-x)=1.
故答案为: .
【点睛】
本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.
18、1
【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.
解:由m2﹣2m﹣1=0得m2﹣2m=1,
所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.
故答案为1.
考点:代数式求值.
三、解答题(共78分)
19、(1);(2)
【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.
【详解】解:(1)x2+x-6=1;
∴
(2)2(x-1)2-8=1.
∴
【点睛】
本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.
20、y=﹣
【分析】由点M与点N关于原点中心对称,可表示出点N的坐标,代入一次函数的关系式,可求得a的值,确定点M的坐标,再代入反比例函数的关系式求出k的值即可.
【详解】∵点M(2,a),点M与点N关于原点中心对称,
∴N(﹣2,﹣a)代入y=﹣2x+8得:
﹣a=4+8,
∴a=﹣12,
∴M(2,﹣12)代入反比例函数y=得,
k=﹣24,
∴反比例函数的解析式为y=﹣.
【点睛】
本题考查了一次函数、反比例函数图象上点的坐标特征,把点的坐标代入相应的函数关系式是常用的方法.
21、(1)证明见解析;(2).
【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.
【详解】(1)证明:连接,
,
,
,
,
在中,,
,
,
则为圆的切线;
(2)设圆的半径为,
在中,,
根据勾股定理得:,
,
在中,,
,
根据勾股定理得:,
在中,,即,
解得:.
【点睛】
此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.
22、, -.
【分析】先求出程x2+x﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.
【详解】解:∴x2+x﹣2=0,
∴(x-1)(x+2)=0,
∴x1=1,x2=-2,
原式=•=,
∵a是方程x2+x﹣2=0的解,
∴a=1(没有意义舍去)或a=﹣2,
则原式=﹣.
【点睛】
本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.
23、 (1)y=-2x+6;(2) 或;(1)1.
【解析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;
(2)由图直接解答;
(1)将△AOB的面积转化为S△AON-S△BON的面积即可.
【详解】(1)∵点在反比例函数上,
∴,解得,
∴点的坐标为,
又∵点也在反比例函数上,
∴,解得,
∴点的坐标为,
又∵点、在的图象上,
∴,解得,
∴一次函数的解析式为.
(2)根据图象得:时,的取值范围为或;
(1)∵直线与轴的交点为,
∴点的坐标为,
.
【点睛】
本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,利用图像解不等式,及割补法求图形的面积,数形结合是解题的关键.
24、(1)P(抽到数字2)=;(2)游戏不公平,图表见解析.
【详解】试题分析:(1)根据概率公式即可求解;
(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.
试题解析:(1)P(抽到数字2)=;
(2)公平.
列表:
由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过32的结果有10种.
所以P(小贝胜)=,P(小晶胜)=.所以游戏不公平.
考点:游戏公平性.
25、(1)90°;(2)1.
【分析】(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.
(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.
【详解】解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,
∴∠ACE=90°,即旋转角为90°,
(2)在Rt△ABC中,
∵AB=10,AC=8,
∴BC==6,
∵△ABC绕着点C旋转得到△DCE,
∴CE=CA=8,
∴BE=BC+CE=6+8=1
26、(1)28cm;(2)3s;(3)7s
【分析】(1)将t=4代入公式计算即可;
(2)第一次相遇即是共走半圆的长度,据此列方程,求解即可;
(3)第二次相遇应是走了三个半圆的长度,得到,解方程即可得到答案.
【详解】解:(1)当 t=4s 时,cm.
答:甲运动 4s 后的路程是 .
(2) 由图可知,甲乙第一次相遇时走过的路程为半圆 ,甲走过的路程为 ,
乙走过的路程为 ,则.
解得 或 (不合题意,舍去).
答:甲、乙从开始运动到第一次相遇时,它们运动了 3s.
(3) 由图可知,甲乙第二次相遇时走过的路程为三个半圆 ,
则
解得 或 (不合题意,舍去).
答:甲、乙从开始运动到第二次相遇时,它们运动了 7s.
【点睛】
此题考查一元二次方程的实际应用,正确理解题意是解题的关键.
2
2
3
6
2
(2,2)
(2,2)
(2,3)
(2,6)
2
(2,2)
(2,2)
(2,3)
(2,6)
3
(3,2)
(3,2)
(3,3)
(3,6)
6
(6,2)
(6,2)
(6,3)
(6,6)
河北保定雄县2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份河北保定雄县2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线y=等内容,欢迎下载使用。
广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知如图,的倒数是,下列命题是真命题的个数是等内容,欢迎下载使用。
重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。